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Abstract:  The formation of multiplexed phase-only holograms with more 
weighted phase functions creates spurious cross terms and nonlinear scaling.  
We extend previously reported work [Appl. Opt. 25, 3767 (1986)] by 
proposing a normal method to analyze multiplexed holograms 
mathematically.  We show that the output of holograms with any number 
weighted phase function can be written as a new linear combination for the 
original phase function with new weights.  The relationship between the 
original weights and the new weights is developed for real-time 
optimization of hologram performance.  We focus on the analysis of two 
and three multiplexed holograms to demonstrate the effectiveness of this 
approach. 
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1. Introduction 

There are several applications including optical pattern recognition [1], optical 
interconnections [2,3], three-dimensional display, and an absolute interferometric test of 
aspherics [4,5], in which several phase functions with different weights are multiplexed into a 
single phase-only or a binary phase-only hologram. In many cases, the multiplexed functions 
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are added and coded onto a spatial light modulator (SLM) such as a magneto-optic spatial 
light modulator, twisted nematic liquid crystals, and transmissive matrix addressed 
ferroelectric liquid crystals. Nonlinearity occurs in these processes because each pixel of the 
SLM must encode the sum of these functions. Research has shown that spurious cross terms 
are formed and the weights of the output have a nonlinear relation with the weights of the 
encoded linear combination [6], which is a fundamentally different result compared with the 
desired output. This problem forces one to use a variety of complicated numerical techniques 
to compensate for the nonlinearities [7–9]. The conventional way to tackle these kinds of 
problem is to use various computer algorithms such as simulated annealing or iterative 
gradient approaches. However, these approaches are computer intensive and not intuitive. We 
propose a new and simple way to analyze the hologram constructed by adding two weighted 
phase functions [10]. However this research is limited to the analysis of two multiplexed 
phase-diffractive elements. The particular technique of this method cannot be extended to 
multiplexed holograms with more than two phase functions. To our knowledge, no previous 
research mathematically deduced the relationship between the encoded weights and the output 
weights with a normal method that is suitable for holograms with N-weighted phase functions. 

We extend previously reported results [8] by proposing a normal method to analyze 
mathematically multiplexed holograms with N-weighted phase functions. We show that the 
output can be written as a new linear combination for the original phase functions with new 
weights.  The relationship between the original weights and the new weights is developed for 
real-time optimization of hologram performance. We use a fast and efficient way to fit 
polynomials to obtain the weights for multiplexed holograms that correspond to the desired 
output and efficiency. In particular we analyze a trifocal hologram with our method. In 
addition, a bifocal hologram can be used in lieu of a trifocal hologram under some conditions, 
and the results obtained with the trifocal hologram are identical with those reported in Ref. 8, 
which corroborates our method. It is believed that holograms with less than N phase functions 
can be used without the need for analysis when we analyze a hologram with N-weighted phase 
functions.  

2. Theory 

We consider a linear combination of N phase functions )exp( niφ  (
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For 0>M , a key point in our development is that 1/M can be considered a periodic function 
of )( 21 φφ − , )( 31 φφ − … )( 1 Nφφ − with period π2 . This allows a Fourier series expansion to 

be performed: 
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This new function leads to two consequences. First, the phase-only diffractive element 
corresponding to N-multiplexed phase functions can be written as a new linear combination of 
the original functions affected by the new weights an. Second, the phase-only operation can 
introduce spurious cross terms. Since the new weights of the output depend only on the 
original weight of the input, one can perform an excellent polynomial fit on their dependence. 
 
3. Validation 
 
If N = 3, according to Eq. (6) the phase-only diffractive element that corresponds to three 
multiplexed phase functions can be written as  
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It is clear that the output can be written as a new linear combination of the original functions 
and spurious cross terms introduced. The new weights depend only on the original weights. 
We define the output ratios as x1 = (a2/a1)

2 and x2 = (a3/a1)
2, the input ratios as  y1 = (A2/A1)

2 
and y2 = (A3/A1)

2.  Then the relationship between the input ratios and the output ratios shown 
in Fig. 1 can be obtained quickly and efficiently by use of a fast Fourier transform (FFT) 

operation. The diffraction efficiency, defined as 2
3

2
2

2
1 aaa ++ , is plotted in Fig. 2 as a 

function of the desired output ratios.  
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(a)                                                                                  (b) 

Fig. 1. Input ratio versus the desired output ratio of the three multiplexed holograms. 
 

 
Fig. 2. Diffraction efficiency versus output ratio of the three multiplexed holograms. 

 
Note that the relationship between the input ratios and the output ratios can be written as 
polynomials: 
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where k is the degree of these polynomials. The polynomial coefficients can be determined by 
performing a least-squares fit of the polynomial on the dependence of input and output ratios.   
Here we chose k = 7 and the polynomials are 

 y1= 0.00005096072781+3.94783x1-0.00873x2-10.19480x1
2+……+ 11.96649x1

2x2
5+        

4.82817x1x2
6-4.11001x2

7                                                                                                           (9)  

y2= 0.00005096072782-0.00873x1+3.94783x2+0.44625x1
2+……+ 8.09256x1

2x2
5+ 

6.93143 x1x2
6+ 2.49845x2

7                                                                                                      (10) 
 
The maximum absolute error of y1 and y2 is less than 0.002.   We could achieve higher 
accuracy by increasing the degree of the polynomial and the sampling number. Now we can 
control the weights of the output in real time by adjusting the weights of the input.  

It should be noted that the mathematical result of the two multiplexed holograms can be 
obtained from that of the three multiplexed holograms with y1 = 0 (results in x1 = 0) or y2 = 0 
(results in x2 = 0). So the relationship between the input ratio and the output ratio of the two 
multiplexed holograms shown in Fig. 3 can be obtained quickly from Fig. 1 [with x2 = 0 in 
Fig. 1(a) or with x1 = 0 in Fig. 1(b)]. The diffraction efficiency shown in Fig. 3(b) can be 
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obtained from Fig. 2 with x1 = 0 or x2 = 0. It is clear that the numerical results are the same as 
those reported in Ref. [8]. 
 

 
                                          (a)                                                                                           (b) 

Fig. 3 (a) Input ratio and (b) diffraction efficiency versus the desired output ratio of two 
multiplexed holograms. 

4. Simulation 

As an example, we created a binary phase-only hologram with N = 3 by quantifying the two-
dimensional phase function with our computer program. Many possibilities can be considered. 
We consider the particular case of three Fresnel lens with the same focal length f, one 
equivalent to a center lens and each of the other two shifted from the origin by an amount a 
and b in the x direction.  If x1 = 0.5 and x2 = 0.6, with Eqs. (9) and (10) we obtain  y1 = 0.5383 
and y2 = 0.6564. This implies that A1 = 0.7623, A2 = 0.4038, and A3 = 0.5004. In such a 
case ( )( )22

1 2/ yxfk +=φ , ( )[ ]22
2 )(2/ yaxfk +−=φ , and ( )[ ]22

3 )(2/ ybxfk ++=φ , 

where k is the wave number. Substituting the phase functions above into Eq. (6), we can write 
the resulting trifocal lens as  
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Here, substituting some pairs of numbers m1 and m2, such as m1 = 0, m2 = 0; m1 = 1, m2 = 0; 
m1 = 0, m2 = 1; m1 = -1, m2 = 0; m1 = 0, m2 = -1; m1 = -1, m2 = 1; m1 = 1, m2 = -1, into Eq. (11), 
we obtain the desired output orders that posit at x = -b, x = 0 and x = +a as shown in Eq. (7). 
At the same time, we also obtain the spurious adjustments that appear at positions x = (m1a-
m2b), x = (m1a-m2 b - a) or x = (m1a-m2b + b). Note that some spurious orders could coincide 
with the desired Fresnel lenses but with different phase functions. This could create a 
difference between the real weight of the output and the calculated weights. However, the 
problem can be compensated by taking these unwanted orders into account, when we calculate 
the relationship between the input ratios and the output ratios according to Eqs. (5) and (7). 

A binary representation of a trifocal hologram is shown in Fig. 4(a) with a = 450 µm, b = 
525 µm, and f = 1.138 m for a wavelength of 632.8 nm (He–Ne laser). The reconstruction of 
the hologram calculated by a Fourier transform of the hologram is shown in Fig. 4(b), in 
which the results are in agreement with the expected ratios. In addition, the locations of the 
peaks are at x = -525 µm, x= 0, and x = 450 µm, in agreement with Eq. (11). Some spurious 
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orders appear at positions x = (m1a-m2b), x = (m1a-m2b - a), or x = (m1a-m2b + b). 
 

 
                                      (a)                                                                                        (b) 

Fig. 4. (a) Binary representation of a trifocal lens desired for x1 = 0.5 and x2 = 0.6 and (b) reconstruction. 

5. Conclusion  

In conclusion, the phase-diffractive element constructed from a linear combination of N-
weighted phase functions has been studied mathematically. We have shown that the final 
diffractive element contains a linear combination of the original phase functions affected by 
new weights and that some undesirable additional terms were created. These new weights 
depend only on the original weights of the input. Polynomial fitting is used to control the 
performance of the holograms quickly and efficiently. As an example, we studied a phase-
diffractive element constructed from a linear combination of three weighted phase functions 
and the codification of three multiplexed Fresnel lenses to discover their performance 
characteristics. This method is suitable for any complex multiplexed phase-diffractive element 
except for M = 0;  however, M = 0 can be calculated by use of  the polynomial fitting reported 
in this paper. 
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