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Abstract
With the rapid development of modern science, the techniques of fabricating
two-dimensional surface-relief gratings with a hemispherical grid for visible
light by chemical methods are proving to be successful. In this paper, we
use a multi-level structure to simulate this kind of grating and adopt the
Lagrange multiplier method to minimize the volume error, and the rigorous
coupled-wave method is employed to analyse the vector diffraction
properties of this kind of grating. By computer simulation and calculation,
the relations between the reflectivity and the structure parameters of the
gratings are presented, and the antireflective characteristics are also studied
when visible light is incident upon them. The results show that this kind of
grating is capable of reducing reflections, and could achieve very low
reflectivity over a wide field of view and a wide waveband by choosing
appropriate parameters. The results also show that the errors can be
neglected when L � 16 and the results are proved to be credible.

Keywords: hemispherical grid subwavelength gratings, rigorous
coupled-wave analysis, antireflection, diffractive optics

1. Introduction

It is well known that conventional multi-layered thin-films are
often used for antireflective coatings. There are, however,
only a handful of optical materials available, thus limiting
the performance that could ideally be achieved. On the
other hand, subwavelength structure (SWS) surfaces, which
are surface-relief gratings with periods smaller than the
incident wavelength, have been researched and found to
have antireflective properties [1–6]. By etching a binary
subwavelength grating onto the surface of a material, one
can synthesize an artificial thin film, which is more stable
than the multi-layered thin-film coating since it is fabricated
from a single material. Until now, the pattern generated by
electron beam lithography or laser holographic recording have
been transferred to the surface by replication or reactive ion
etching [7–16]. In these exposure and transferring methods,
however, the SWS surface grating to be designed over the

visible light waveband is not always fabricated easily and
it consumes a lot of time. Recently, monolayer colloidal
spherical microparticle arrays have been fabricated through
chemical methods, whose diameters range from 0.02 to
10 µm [17]. Moreover, colloidal stamps, which are the
duplicate negatives of the microparticle arrays, have been made
and the hemispherical subwavelength surface relief gratings
could be generated by transferring the surface shape of the
colloidal stamps onto the surface of optical elements [18–20].
As this kind of grating can be fabricated easily and perfectly
and can be duplicated by using a sol–gel method which can
produce a glass SWS on a glass substrate, they could behave
as antireflective surfaces for visible light.

However, as we know, there have been no theoretical
studies on the hemispherical subwavelength surface relief
gratings shown in figure 1. In this paper we use the
rigorous coupled-wave method to analyse and calculate the
characteristics of the hemispherical grid grating, which is
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Figure 1. A two-dimensional surface-relief grating with
hemispherical grid.

approximated by the multi-level columned structure shown in
figure 2. The results show that this kind of grating is capable
of reducing reflections and we can get very low reflectivity
by choosing appropriate parameters. Fortunately, the results
satisfy energy conservation, and the numerical instability
problem and the convergence problem have not emerged in
our calculations.

2. Description of the theory

A two-dimensional surface-relief grating with hemisphere
profile with radius R is shown in figure 1. To study the optical
characteristics of the grating, we may use a multi-step column
structure which is shown in figure 2 to simulate it. We could
assume that the diameter of the hemisphere D to be equal to
2R, T to be equal to the period of the grating, the depth of the
lth level to be hl and the radius of the lth level to be rl .

In figure 2, however, there is an error when we use the
multi-step column structure to simulate the hemisphere. To
minimize the error, we should choose appropriate values of
hl to make sure the volume of the multi-step structure (Vm)

approximates the volume of the hemisphere (Vh). The volume
error E(h1, h2, . . . , hL) can be expressed as

E(h1, h2, . . . , hL) = Vm − Vh =
L∑

i=1

πr 2
i hi − 2

3π R3

=
L∑

i=1

π

[
R2 −

(
R −

i∑
j=1

hi

)2]
hi − 2

3 π R3. (1)

We could apply the Lagrange multiplier method to solve
the problem in which we may construct an auxiliary function

F(h1, h2, . . . , hL) = E(h1, h2, . . . , hL)+λϕ(h1, h2, . . . , hL)

(2)
with the condition function ϕ(h1, h2, . . . , hL) = 0, where

ϕ(h1, h2, . . . , hL) = (h1 + h2 + · · · + hL − R) = 0 (3)

and λ is a constant. By calculating the partial differential of
h1, h2, . . . , hL , and letting them equal 0, we have the partial
differential equations set (4). Finally, we can find the values
of h1, h2, . . . , hL by solving the partial differential equations
set (4).

∂ F(h1, h2, . . . , hL)

∂h1

= ∂E(h1, h2, . . . , hL)

∂h1
+ λ

∂ϕ(h1, h2, . . . , hL)

∂h1
= 0

∂ F(h1, h2, . . . , hL)

∂h2

= ∂E(h1, h2, . . . , hL )

∂h2
+ λ

∂ϕ(h1, h2, . . . , hL )

∂h2
= 0

...

∂ F(h1, h2, . . . , hL)

∂hL

= ∂E(h1, h2, . . . , hL )

∂hL
+ λ

∂ϕ(h1, h2, . . . , hL )

∂hL
= 0

ϕ(h1, h2, . . . , hL) = h1 + h2 + · · · + hL − R = 0.

(4)

For example, we may find h1 = R/3, h2 = 2R/3 when
L = 2, and h1 = 0.1623R, h2 = 0.1821R, h3 = 0.2185R,
h4 = 0.4371R when L = 4, etc. When L is large enough,
the volume error may be neglected. In particular, the volume
error E(h1, h2, . . . , hL) is less than 4.59% of the volume of
the hemisphere when L = 16 and E(h1, h2, . . . , hL) is less
than 2.32% of the volume of the hemisphere when L = 32.

To analyse the antireflective properties of the multi-level
structure shown in figure 2, we could take each level as a
single step columned grid structure shown in figure 3 and
apply boundary conditions between the levels. As Zhang [21]
has already analysed the characteristics of the single-step
columned grid grating, we may follow his program in the
calculations of each level.

For the lth layer shown in figure 3, the space is divided
into three regions labelled by regions I, II and III. In regions I
and III, the light field may be written in terms of plane-wave
expansions. Let Ei be the incident field with wavevector k1

and a polarization vector u, Rmn be the reflected waves with
wavevector k1mn in region I and Tmn be the transmitted waves
with wavevector k3mn in region III, respectively. According to
the Rayleigh expansions, the electric fields may be represented
by

EI = Ei +
∞∑

m=−∞

∞∑
n=−∞

Rmn × exp(ik1mn × r) (5)

EIII =
∞∑

m=−∞

∞∑
n=−∞

Tmn × exp[ik3mn × (r − h)]. (6)

In region II, let EII and H II be the electric and magnetic fields,
respectively. Their components can each be written as an
expansion in terms of a particular set of the space harmonics,
which are approximated to be independent of z as follows:

EII =
∞∑

m=−∞

∞∑
n=−∞

[E x
mn(z)i + E y

mn(z)j] × exp[i(kxmi + kynj)]

(7)

H II =
(

ε0

µ0

)−1/2 ∞∑
m=−∞

∞∑
n=−∞

[H x
mn(z)i + H y

mn(z)j]

× exp[i(kxmi + kynj)]. (8)

In the following, we rewrite the permittivity ε and its reciprocal
ε−1 of the grating by the Fourier expansion

ε(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

εpq(z) × exp

[
i

(
p

2π

Tx
x + q

2π

Ty
y

)]

(9)
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Figure 2. Geometry of the multi-step column structure and the hemispherical grad grating.

Region II 

Region III 

Region I 

h x

T D z 

y’ 

 E 

x’ 

Incident plane 

Figure 3. Geometry of the 2D columned grid grating diffraction
problem analysed.

ε−1(x, y, z) =
∞∑

p=−∞

∞∑
q=−∞

ε̄pq(z)×exp

[
i

(
p

2π

Tx
x +q

2π

Ty
y

)]

(10)
respectively, with

εpq(z) = 1

Tx Ty

∫ Tx
2

− Tx
2

∫ Ty
2

− Ty
2

ε

× exp

[
−i

(
p

2π

Tx
x + q

2π

Ty
y

)]
dx dy (11)

ε̄pq(z) = 1

Tx Ty

∫ Tx
2

− Tx
2

∫ Ty
2

− Ty
2

1

ε

× exp

[
−i

(
p

2π

Tx
x + q

2π

Ty
y

)]
dx dy. (12)

For the lth columned grid grating, the permittivity is expressed
as

εl =




ε1 −Tx/2 < x < Tx/2, −Ty/2 < y < Ty/2,

and x2 + y2 > r 2
l

ε2 x2 + y2 < r 2
l

(13)
with subscript l = 1, . . . ,L denoting levels (layers) l .

Here, we use the inverse of Toeplitz matrix presented
by Li [22] to improve the convergence of the coupled-wave
method.

To solve the electric and magnetic fields in reign II,
Moharam and Gaylord [23] used a state-variable method,
which gives the solution to be written in terms of the
eigenvalues and eigenvectors of the corresponding coefficient
matrix

E x
mn =

∑
j

C j φ
1
mn, j exp(r j z) (14)

E y
mn =

∑
j

C j φ
2
mn, j exp(r j z) (15)

H x
mn =

∑
j

C j φ
3
mn, j exp(r j z) (16)

H y
mn =

∑
j

C j φ
4
mn, j exp(r j z) (17)

with the eigenvalues r j and the elements φl
mn, j of the

eigenvector matrix. By substituting equations (10)–(13) into
the group of Maxwell’s differential equation, we obtain the
following characteristic equation

rφ = φA (18)

where A is a constant matrix. After determination of matrix
A, we find r j and φl

mn, j by solving the eigenvalues and
eigenvectors of A. Then we consider the electromagnetic
boundary conditions and calculate the constant coefficients
C j left as unknown in equations (10)–(13). The next step
of the procedure is to determine the components of Rmn and
Tmn , which are calculated via equations (10)–(13) and the
electromagnetic boundary conditions.

To fulfil the boundary conditions between the two levels
as the following

E x
mn,l(hl) = E x

mn,l+1(hl), (19)

E y
mn,l(hl) = E y

mn,l+1(hl), (20)

H x
mn,l(hl) = H x

mn,l+1(hl), (21)

H y
mn,l(hl) = H y

mn,l+1(hl), (22)
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with l = 1, 2, . . . , L denoting the coordinate of each level at
the boundary, we have the relation

A1(h)C1 = A2(h)C2

A2(2h)C2 = A3(2h)C3

...

Al(lh)Cl = Al + l(lh)Cl+1

...

(23)

So we can give the expression

C1 = A′
1(h)A2(h)A′

2(2h)A3(2h) · · · A′
l−1(lh − h)Al(lh)Cl

(24)
where Al is the lth level coefficient matrix and Cl denotes the
expansion coefficient matrix of the lth level field expression.
Due to this relation, we could calculate Cl via A1, . . . ,Al and
C1.

The diffraction efficiencies ηI
mn and ηIII

mn for the reflected
and transmitted waves may be given by

ηI
mn = Re(kI

zmn/kI
z00)|Rmn |2 (25)

and
ηIII

mn = Re(kIII
zmn/kIII

z00)|Tmn|2 (26)

where Re denotes the real part of a variable, and kI
zmn and kIII

zmn
are the components along the z-direction of the wavevectors
k1mn and k3mn, respectively. For a lossless grating in which
the permittivity εIII is a real number, conservation of energy
requires that

∞∑
m=−∞

∞∑
n=−∞

(ηI
mn + ηIII

mn) = 1. (27)

3. Results and discussion

With the formulae above, we could study the characteristics
of the multi-level stairstep surface-relief grating, and the
programs were written in Matlab language V6.5. When the
total number of the steps L is large enough (L � 8), the
multi-step structure may approximate the surface-relief grating
with hemispherical grid with very little error. In our program
we use a 16-step structure to approximate the hemispherical
grid surface-relief grating. In this paper, we use some basic
parameter as below, the refractive indices of the grating ns =
1.5, the refractive indices of the surrounding media ni = 1 and
the number of the stairs L = 16.

As a hemispherical grid grating, it has two important
structure parameters, the period T and diameter D. Figure 4
shows the relation between reflectivity and the period of the
hemisphere, with parameters: wavelength λ = 0.6 µm,
D = 0.8T , incident angle α = 0◦ and polarization angle

 = 90◦. We can see that the reflectivity is below 0.2%
when the period is between 0.35 and 0.6 µm. Moreover,
the reflectivity approximates 0 when the period approximates
0.39 µm. Therefore, we can design the grating with the
period between 0.35 and 0.6 µm to achieve good antireflective
properties. If we design to fabricate a hemispherical grating

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

R
ef

le
ct

iv
it

y(
%

)

Period  (µm)

Figure 4. Relation between reflectivity and the period of the
hemisphere, with parameters: wavelength λ = 0.6 µm, D = 0.8T ,

 = 90◦ and α = 0◦.
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Figure 5. Relation between reflectivity and D/T , with parameters:
T = 0.39 µm, wavelength λ = 0.6 µm, 
 = 90◦ and α = 0◦.

with the period of 0.475 µm, the fabrication error within
±0.125 µm (26.3% error) could have very little effect on the
antireflective properties of this kind of grating.

Figure 5 presents the relation between reflectivity and the
value D/T , with parameters T = 0.39 µm and wavelength
λ = 0.6 µm. We can see that the value D/T has great
influence on the reflectivity. When it is below 0.53, the
reflectivity is above 2% and only when it approximates 0.8
can the reflectivity approximate 0. Compared with figure 4,
we may find that controlling the value D/T precisely is a
very important problem when we fabricate this kind of grating.
To get good antireflective characteristics, we should make D
equal 0.8T and the fabrication errors should not be larger than
0.11T (±0.04 µm) if we want reflectivity to be less than 0.5%;
this result could be realized by modern chemical technology.

Figure 6 shows the reflectivity curves for this kind of
grating in the visible waveband at normal incidence. We can
see that the grating can achieve extremely low reflection, which
is below 0.3%, to cover the whole visible light waveband. This
property shows that this kind of grating is very useful to reduce
the reflectance of visible light.

Figures 7 and 8 present the reflectivity curves for this kind
of grating in the visible waveband at normal incidence when we
adopt different slicing methods, and we can see the influence of
the total number of the stairs L on our results. Comparing the
two figures, we may find that the convergency is accelerated
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Figure 6. Diagram of reflectivity in the visible waveband, with
parameters: T = 0.39 µm, D = 0.8T , 
 = 90◦ and α = 0◦.
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Figure 7. Diagram of reflectivity in the visible waveband with L
being equal to 1, 2, 4, 8, 16 and 32, with parameters: T = 0.39 µm,
D = 0.8T , 
 = 90◦ and α = 0◦, where the height of the slices
h1, h2, . . . , h L are the results of the Lagrange multiplier method.
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Figure 8. Diagram of reflectivity in the visible waveband with L
being equal to 1, 2, 4, 8, 16 and 32, with parameters: T = 0.39 µm,
D = 0.8T , 
 = 90◦ and α = 0◦, where the height of the slices
h1, h2, . . . , h L are equal to each other.

by adopting the Lagrange multiplier method and the errors
are also obviously lessened when L � 8. However, we can
see that the errors become neglectable when L is large enough
(L � 16) and we can hardly distinguish the difference between
the two curves corresponding to L = 16 (volume error less
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Figure 9. Relation between reflectivity and polarization angle, with
parameters: T = 0.39 µm, λ = 0.6 µm, D = 0.8T and α = 10◦.
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Figure 10. Relation between reflectivity and polarization angle,
with parameters: T = 0.39 µm, λ = 0.6 µm, D = 0.8T and
α = 20◦.
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Figure 11. Relation between reflectivity and polarization angle,
with parameters: T = 0.39 µm, λ = 0.6 µm, D = 0.8T and
α = 30◦.

than 4.59%) and L = 32 (volume error less than 2.32%) in
both figures 7 and 8. We can also see from the two figures that
the effect of the Lagrange multiplier method becomes weak
when L increases (especially when L � 16). So the results in
this paper with the 16-level structure are very credible.

Due to the symmetry of the problem, we can know that
when the polarization angle of the incident wave is varied from
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Figure 12. Relation of reflectivity versus incident angle, with
parameters: T = 0.39 µm, λ = 0.6 µm, 
 = 90◦ and D = 0.8T .

0◦ to 90◦ there is hardly any change in the reflectivity in the
case of normal incidence (α = 0◦). Then, figures 9–11 show
the dependence of reflection on polarization angle in the case
of non-normal incidence (α = 10◦, 20◦, 30◦). It can be seen
from the three figures that the reflectivity decreases when the
polarization angle increases from 0◦ to 90◦. Moreover, the
reflectivity decreases more rapidly with the same increment of
the polarization angle when α is larger.

The relation of reflectivity versus incident angle α is
shown in figure 12. We can see that the hemispherical grid
grating can achieve extremely low reflectivity over the very
wide field of incidence. We can get very low reflectance which
is less than 0.5% over the field of view larger than 60◦.

4. Summary and conclusions

In this paper, the algorithm of coupled-wave analysis for
a two-dimensional surface-relief grating with hemispherical
grid is studied and the results of our computer simulation
for the grating are presented. By computer simulation, we
obtained the relations between the reflectivity and the various
grating parameters. Fortunately, the results satisfy energy
conservation, and the numerical instability problem and the
convergence problem have not emerged in our calculations.

We find that this kind of grating can be designed over the
whole visible light waveband and it can achieve extremely low
reflectance over a broad field of view, which will be very useful
when designing a novel optical system.
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