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Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting
with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature
dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an

improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives

the numerical result in qualitative agreement with the mean field theory.

PACS: 61.30.Cz, 61.30. Gd

Stable biaxial phase has been observed in lyotropic
systems as early as 19801 and it has definitely been
confirmed by deuterium nuclear magnetic resonance
spectroscopy.? In 2004, firm evidence of this phase in
the thermotropics was reported.[4 This fact received
a great deal of attention’! and might create a new
area of research in the field of liquid crystals: for ex-
ample, new liquid crystal states in porous media.[®! In
the theoretical aspect, the biaxial nematic liquid crys-
tal phase has been studied by two kinds of microscopic
models, which represent liquid crystal molecules pos-
sessing Dsj, symmetry. The one, consisting of ap-
propriate continuous potentials, has been treated by
molecular field (MF) theoryl” 'Y and by Monte Carlo
(MC) simulation.!'>=16] The other, consisting of hard
core potentials, has been investigated by analytical
study27=19] and also by simulation.2%2!] Here we are
interested in the former, which can be traced back to
a general model proposed by Straley, !

V('Qla ‘92) = V(’LL1, V1, Wwy; U2, V2, ’UJ2)
= — e{Py(wy - wy) — I'[Pa(ug - ug) — Py(v1 - v3)]

+ A[2P2(u1 . UQ) + 2P2(’U1 - 1)2) — Pz(wl - ’UJQ)]},
(1)
where P, is the second order Legendre polynomial; €
denotes a positive quantity setting temperature and
energy scales, i.e. T* = kgT/e, and this scaled tem-
perature is the same as that in Refs. [14,15] (it differs
from its counterpart in Refs.[8,10] by a fact of 9).
Here u,v, and w are the three mutually orthogonal
unit vectors set in the molecule frame and w is along
the long axial of prolate molecules. Both I' and A
are the potential parameters. An important special
case is I' = A2, and Eq. (1) reduces to the pair po-
tential proposed by Luckhurst and Romano,'? which

can be interpreted within London’s dispersion approx-
imation. Recently, the admissible values of I' and A
were discussed by Sonnet et al.,1°) and another spe-
cial case of Straley interaction, defined by I' = 0, was
explored by means of MF.[10:11]
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Fig. 1. Scaled internal energy as a function of scaled tem-

perature. Solid line: the TPC theory; dashed line: the MF
[15]

theory; circles: the MC simulation.

We are interested in the fact that the London force
model (i.e. I' = A2) gives a phase diagram with Lan-
dau bicritical point at I' = 1/\/6, predicted both
by MF and MC,13! while the simplified model (i.e.
I' = 0) shows a phase diagram exhibiting two tricrit-
ical points,!'! one being in the range 0 < A < 1/3,
the other in 1/3 < A < 1. In the resulting phase
diagram of MF (Fig.4 in Ref.[10]), the biaxial to
uniaxial transition is found to be second order for
0 < A <0.20, the first order for 0.20 < A < 0.22, and
finally a direct first-order transition between biaxial
and isotropic phases occurs for 0.22 < 4 < 1/3. In
the subsequent MC simulations made by Romano, 5]
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the B1 model (A = 0.24) and the B2 model (4 = 0.3) -exp{ _ LV(Qh .(22)}d!21d!22. (6)
were studied in detail. The existence of the tricriti- kT

cal point has also been confirmed by an experimental
study,??! so that it is meaningful at present to inves-
tigate this subject by means of improved statistical
theory beyond MF. In this Letter, we apply the two-
particle cluster (TPC) theory[?3:24] to the biaxial ne-
matic model along the scheme proposed by Sonnet et
al. and we only pay attention to 0 < A4 < 1/3.

Let us consider a system formed by N liquid
crystal molecules. The orientations of liquid crys-
tal molecules are described by the Euler angles 2 =
(a, B,7). Using the Euler angles, we give the Carte-
sian components of the three unite vectors in the pair
potential.?®] Define one-body orientational distribu-
tion function g({2;) and two-body orientational distri-
bution function g(§2, {22). They satisfy the normal-
ization condition and the consistency condition

[ atean =1, (2)
/9(91, 25)dfy = g(£2y), (3)

where df? = dasin fdfdy and the angular integra-
tion is extended to the usual domains 0 < a < 27,
0<p8<m0< vy <27 According to the TPC ap-

proximation, the free energy of the system is expressed
(23]
as

F= %N//{ZV(Ql, -QZ) + szlng(Q1, '92)

—(z=1)kTIng(21)9(2)}g(21, 25)d2,d 82,
(4)

where z is the coordination number and we take z = 6,
which corresponds to the simple cubic lattice, as in the
MC simulation.['®] Making variation to the distribu-
tion under the constraints of Egs. (2) and (3), we min-
imize the free energy, and then obtain the one-body
distribution function:

a() ={ [l

. exp {— %V(Ql,fb)}dﬂg}z

A [{ [ ot

1 z -1

. exp {f V(8 %)}d(b} d()l} .
(5)
This is the functional equation that the one-body dis-
tribution function should be satisfied. From Eqgs. (4)

and (5), we can obtain the free energy for an equilib-
rium state:

Fe %Nszln/ ()Y {g(2) 112

Now, the problem is how to solve the functional
equation (5). If the function is known, we can then
calculate the four order parameters:[!3l

Ry = [ Pacos pra(yic, (7a)
REy =38 [ sn? peoszg(@)de, (1)
R2,=+/3/8 / sin? 3 cos(2a)g(£2)ds2, (7¢)
RZ, = / E(co& B+ 1) cos(2) cos(27)

— % cos B sin(2a) sin(2v) | g(£2)d12;
(a)

the fourth rank order parameter

z%=/amwmm, (8)

and the internal energy U = 9(9F)/(93) (here 3 =
1/kpT). R%, and R3, are the order parameters for
the biaxial nematic phase, i.e. at least one of them is
non-zero in this phase.

Here we use an iterative method to solve the func-
tional equation (5). We know that g(§2) depends on
the Euler angles «, 3,7, so we can define g(§2) on
n X n x n discrete points, the values of the correspond-
ing points are limited as follows:

0<a<2m, 0<cosf<1, 0<~y<2m.

Here we choose the Gaussian point order:

ho(1—1/v342k), hao(1+1/V3+2k)
for the value of «,

hs(1 —1/V/3 +2k), hg(1+1/V3 + 2k)
for the value of cos (3,

hy(1=1/V3+2k), h,(1+1/V3+ 2k)
for the value of ~,

where k = 0,1,2,---% —1; hy = 21/n, hg = 1/n,
hy =2m/n.

Let us define a six-dimensional matrix

1
— —V (2, 2

kT ( 1 2)
(ilajlakl;i25j27k2 = 1727' ’I’L)

(9)

Using the iterative method and the above matrix,
Eq. (5) can be rewritten as

M(i17j17k13i2aj27k2) = exp

Im+1 (ail , COS ﬂ_h ) ’Ykl)

= {hahﬁh'y Z M(il,jl,kl;iQ,jQ,kz)

izjaka
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' [gm(aiza Ccos ﬁjzavkz)]lil/z}

{hahﬂh’y Z {hahﬁh.y Z M(il,jl,kl;iz,jQ,k2)

i151k1

. [gm(ai27 cos ﬂj277k2)]171/z}z}71.

i2jaka
(10)

If the iterative converges, i.e. giri(a,cosf,v) =
gi(a,cos B,7) for I > m, then g,,(a,cos3,7) is a solu-
tion to Eq. (5).

In order to compare our numerical results with
those by the MC simulation('s] and by the MF
theory,['%) we have made calculations for the B1 and
B2 models as mentioned above. We take n = 20, and
it may be the maximum value available for the six-
dimensional matrix given by Eq. (9), when performing
our calculations on supercomputer NK stars in Nankai
Institute of Scientific Computing, Nankai University,
China. Numerical results obtained successfully are
reasonable.

Firstly, for the B1 model, we find a direct first-
order transition between biaxial and isotropic phases
at T* = 1.2294, so that the result is consistent with
the prediction of MF, but in contradiction with that of
MC. We know that MC predicts that for the B1 model,
there is a biaxial to uniaxial transition at 7* = 1.20,
closely followed by a uniaxial to isotropic transition at
T =1.22.
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Fig. 2. Order parameter Rgo as a function of scaled tem-
perature. Solid line: the TPC theory; dashed line: the
MF theory; circles: the MC simulation.[15]

For the B2 model, there is a direct first-order tran-
sition between biaxial and isotropic phases, predicted
by TPC, MF and MC,; i.e. the order parameters are
non-zero at the phase transition and the phase transi-
tion is determined by the free energy. We can quanti-
tatively compare numerical results of our TPC theory
with those of MF and MC. In Figs. 1-4, the solid line
represents the results of TPC; the dashed line is the
theoretical predictions of MF and the pluses are the
results obtained by MC. Figure 1 shows the scaled in-
ternal energy per particle U*(= U/N¢) as a function
of the scaled temperature T*. We can see that TPC

predicts that the non-zero internal energy will occur
in the isotropic phase, which is expected and consis-
tent with the simulation. The difficulty of MF in the
wrong prediction that the isotropic phase has the zero
internal energy is thus overcome.[23:24]
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Fig. 3. Order parameter R%Z as a function of scaled tem-
perature. Solid line: the TPC theory; dashed line: the
MF theory; circles: the MC simulation.[!5]
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Fig. 4. Order parameter Réo as a function of scaled tem-
perature. Solid line: the TPC theory; dashed line: the
MF theory; circles: the MC simulation.[!5!

In Figs. 2-4, we give the order parameters R2, R2,
and R$,, and we have paid attention to the fact that
both R2, and R%, are smaller than 0.01 for all the
calculated temperatures (and for the whole simplified
model, i.e. I' = 0 and 0 < A4 < 1/3), which is in
agreement with the result of MF and that of MC. The
biaxial-isotropic phase transition occurs at the scaled
temperature 1.3356, predicted by TPC. In Table 1,
we list the relevant properties at the phase transi-
tion given by our theory and compare with the MC
simulation!'] and the MF theory.['”) We can see that
taking the result of MC as the criterion TPC yields an
improved result compared with MF. As we know that
MF overestimates the strength of the first-order uni-
axial nematic—isotropic phase transition,?®! it stands
to reason that overestimating occurs for MF to repre-
sent the biaxial nematic—isotropic phase transition.
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Table 1. Comparison of the prediction of the TPC theory with the results of the MF theory and of the MC simulation.

Method T5, AU* RZ) R2, R},
TPC 1.3356 1.3204 0.5534 0.2567 0.1912
MF 1.4652 1.9221 0.5967 0.2812 0.2395
Mclsl 1.3244-0.001  0.754-0.04 0.43540.016 0.194-0.01  0.1034+0.008
In conclusion, TPC achieves success for the B2 [6] Yue W Z, Tao G and Zhu K Q 2004 Chin. Phys. Lett. 21
model by taking into account molecular short-range 2059
correlations and MF overestimates the first-order [7] Freiser M J 1970 Phys. Rev. Lett. 24 1041
L K [8] Straley J P 1974 Phys. Rev. A 10 1881
character of the transition, as is well known for the [9] Luckhurst G R, Zannoni C, Nordio P L and Segre U 1975
Lebwohl-Lasher modell26] (set ' = 0, A = 0 in Mol. Phys. 30 1345
Eq.(1)). As far as we know, we firstly give a molecular ~ [10] Sonnet A M, Virga E G and Durand G E 2003 Phys. Rev.
statistical theory for the biaxial nematic liquid crys- E 67 061701 )
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