

Chinese Chemical Letters 18 (2007) 333-336

Synthesis and photovoltaic properties of new europium complex Eu(DBM)₃(CPyBM)

Li Ying Zhang a,b, Bin Li a,*, Shu Mei Yue a, Wen Lian Li a

Abstract

A new europium(III) complex, tris(dibenzoylmethanate){1-[9-hexyl-9-carbazole]-2-(2-pyridyl)-benzimidazole}europium(III) [Eu(DBM)₃(CPyBM)] was synthesized and used as an electron-acceptor and electron-transport layer in organic photovoltaic (PV) device. Power conversion efficiency achieved from the device was 1.04% under illumination with 365 nm UV light at 1.6 mW/cm². Compared with the previous reported devices based on Eu(III) complexes, the PV performances were improved. The working mechanism of the organic PV device was discussed.

© 2007 Bin Li. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Organic photovoltaic device; Europium complex; Synthesis

Organic PV devices have attracted much attention due to their excellent properties such as light weight, low cost and compatibility with flexible substrates [1]. Most efforts, made in the past two decade, focused on improvement of power conversion efficiency (η_p) [2,3]. Unfortunately, η_p and the lifetime of organic PV devices are far from satisfactory. Both materials choice and device processing techniques are crucial for improving η_p [2,4]. Conjugated polymers, such as poly(phenylene vinylene) and its derivatives [5], have become the most interesting materials in the organic PV field, and in recent years attention has also been paid to some small molecules [5,6]. Chu et al. [7] have reported a PV device using yttrium complex as electron-acceptor with open circuit voltage (V_{oc}), short circuit current (I_{sc}), fill factor (FF) and η_p of 2.15 V, 46 μ A/cm², 0.3, 0.7%, respectively.

In order to explore highly efficient organic PV materials, herein we report the synthesis of an Eu(III) complex Eu(dibenzoylmethanate)₃(CPyBM) (Scheme 1). CPyBM containing 2-(2-pyridyl)benzimidazole fragment was selected as the second ligand, since it is thought to enhance the electron-transport capability of material [8], and the PV device using Eu(DBM)₃(CPyBM) as an electron-acceptor and electron-transport layer was fabricated simultaneously. The PV properties of Eu(DBM)₃(CPyBM) were investigated. The synthetic routes of the ligand CPyBM and the complex Eu(DB M)₃(CPyBM) are presented in Scheme 1.

E-mail address: lib020@ciomp.ac.cn (B. Li).

^{*} Corresponding author.

Eu(DBM)₃(CPYBM)

Scheme 1. Synthesis routes of the ligand CPyBM and the complex Eu(DBM)₃(CPyBM).

1. Experimental

9-(6-Bromohexyl)-9*H*-carbazole was prepared according to a literature method [8].

Synthesis of CPyBM. A mixture of 9-(6-bromohenxyl)-9*H*-carbazole (1.67 g, 5 mmol), 2-(2-pyridyl)benzimidazole (0.98 g, 5 mmol), NaOH (0.22 g, 5.5 mol) and DMF (30 mL) was stirred and heated at 120 °C for 15 h under N₂. It was subsequently poured into water, extracted with CH₂Cl₂. The resulting residue after removal of the solvent was purified by chromatography to give 1.8 g of product. Yield: 80%. mp: 50 °C. ¹H NMR (CDCl₃, δ ppm): δ 1.27–1.39 (m, 4H, alkyl protons), 1.68–1.85 (m, 4H, alkyl protons), 4.25–4.29 (t, 2H, J = 6.83 Hz, –NCH₂–), 4.77–4.81 (t, 2H, J = 7.46 Hz, –NCH₂–), 7.27 (t, 2H, J = 8.01 Hz, aromatic protons), 7.31 (t, 2H, J = 8.25 Hz, aromatic protons), 7.32 (t, 2H, J = 6.98 Hz, aromatic protons), 7.35 (d, 2H, J = 7.82 Hz, aromatic protons), 7.37 (d, 2H, J = 7.64 Hz, aromatic protons), 7.45 (d, 2H, J = 7.54 Hz, aromatic protons), 8.10 (d, 1H, J = 7.62 Hz, aromatic proton), 8.17 (t, 1H, J = 8.23 Hz, aromatic proton), 8.29 (t, 1H, J = 7.93 Hz, aromatic proton), 8.501 (d, 1H, J = 8.06 Hz, aromatic proton). EI-MS: m/z 444 (M⁺).

 $Eu(DBM)_3(CPyBM)$ was prepared according to a literature method [9]. Elemental analysis for $C_{75}H_{61}N_4O_6Eu$. Calcd: C, 71.14; H, 4.85; N, 4.42. Found: C, 71.20; H, 4.61; N, 4.34.

PV device with structure of indium tin oxide (ITO)/ploy(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) (20 nm)/4,4′,4″-tris-[3-methylphenyl (phenyl) amino]triphenyl amine (*m*-MTDATA) (30 nm)/Eu(dibenzoylmethanate)₃ (CPyBM) (60 nm)/LiF (1 nm)/Al (100 nm) was fabricated as shown in Fig. 1. Eu(DBM)₃(CPYBM) and *m*-MTDATA were used as electron-acceptor and electron-donor, respectively. The ITO coated glass substrate was pre-coated with PEDOT:PSS, which acted as hole injection layer to lower the hole barrier at the ITO anode and increase the short circuit current. The light-state *I–V* characteristics of the PV device were measured under UV illumination at 365 nm of 1.6 mW/cm². The absorption spectra were measured with Shimadzu UV-3101PC spectrophotometer. Photocurrent response curves were recorded under 40 μA/cm² Xe lamp.

Al	
LiF (1 nm)	
Eu-complex (60 nm)	
m-MTDATA (30nm)	
PEDOT:PSS (20 nm)	
ITO	
GLASS	

Fig. 1. The configuration of the PV device.

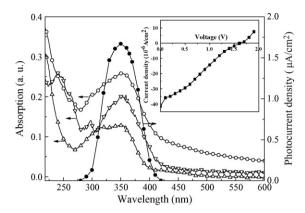


Fig. 2. The absorption spectra of Eu(DBM)₃(CPyBM) film (down triangle), *m*-MTDATA film (up triangle), *m*-MTDATA/Eu(DBM)₃(CPyBM) film (open circle), and photocurrent response of PV device (solid circle). Inset the *I*-V characteristics of the PV device.

2. Results and discussion

Fig. 2 exhibits the absorption spectra of m-MTDATA, Eu(DBM)₃(CPyBM) and m-MTDATA/Eu(DBM)₃(CPyBM) films, and the photovoltaic spectral response of the PV device. For the Eu(DBM)₃(CPyBM) film, the band at 297 nm is attributed to the absorption of carbazole fragment, the absorption band centering at 350 nm is assigned to π - π * transition of the DBM ligand. By compared the photocurrent response curve of the device with the absorption spectra of Eu(DBM)₃(CPyBM) and m-MTDATA films, it is found that their maximum peaks are nearly at the same position, and the total absorption of m-MTDATA/Eu(DBM)₃(CPyBM) films consists of Eu(DBM)₃(CPyBM) film and m-MTDATA film, indicating that the generation of photocurrent is attributed to the total absorption of both the m-MTDATA layer and the Eu(DBM)₃(CPYBM) layer. The most sensitive response wavelength of the device is about 310–390 nm, so this PV device containing Eu(DBM)₃(CPyBM) is suitable for fabricating photodetectors to detect UV light.

Both Eu(DBM)₃(CPyBM) and *m*-MTDATA have contributed to the PV effects of the device, and Eu(DBM)₃(CPyBM) should play electron-acceptor role, while *m*-MTDATA played electron-donor role in our PV device. Dissociations of the excitons must take place at the interface between Eu(DBM)₃(CPyBM) layer and *m*-MTDATA layer. The typical parameters, V_{oc} , I_{sc} , and FF of the PV device reached about 1.61 V, 41.5 μ A/cm², and 0.25, respectively, and η_p was about 1.04% under illumination with 365 nm UV light at 1.6 mW/cm², as shown in the inset of Fig. 2. These parameters are superior, compared with the previously reported PV device based on Eu(III) complex [10].

In conclusion, an Eu(III) complex Eu(DBM)₃(CPyBM) was synthesized and used as electron-acceptor and electron-transport layer in organic PV device. The typical parameters, $V_{\rm oc}$, $I_{\rm sc}$, and FF of the PV device reached about 1.61 V, 41.5 μ A/cm², and 0.25, respectively, and $\eta_{\rm p}$ was about 1.04% under illumination with 365 nm UV light at 1.6 mW/cm². Our results demonstrated that the PV performance based on lanthanide complex can be effectively improved by molecular design and superior device architecture.

Acknowledgments

The authors gratefully thank the financial supports of One Hundred Talents Project from Chinese Academy of Sciences, and the National Natural Science Foundations of China (No. 20571071).

References

- [1] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285 (1999) 692.
- [2] P. Peumans, V. Bulovic, S.R. Forrest, Appl. Phys. Lett. 76 (2000) 2650.
- [3] A. Yakimov, S.R. Forrest, Appl. Phys. Lett. 80 (2002) 1667.
- [4] P. Peumans, S.R. Forrest, Appl. Phys. Lett. 79 (2001) 126.

- [5] S.A. Jenekhe, S.J. Yi, Appl. Phys. Lett. 77 (2000) 2635.
- [6] H. Hansel, H. Zettl, G. Krausch, et al. Adv. Mater. 15 (2003) 2056.
- [7] B. Chu, D. Fan, W.L. Li, Z.R. Hong, R.G. Li, Appl. Phys. Lett. 81 (2002) 10.
- [8] Z.H. Peng, Z.N. Bao, M.E. Galvin, Chem. Mater. 10 (1998) 2086.
- [9] T.C. Wang, J. Kovac, C.S. Lee, L.S. Huang, S.T. Lee, Chem. Phys. Lett. 61 (2001) 334.
- [10] B. Chu, W.L. Li, H.Z. Wei, et al. J. Alloys Compd. 398 (2005) 252.