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Abstract
We report the synthesis of aligned ultra-long single-crystalline α-Si3N4 nanowires by pyrolysis
of a polymeric precursor without any template. The length of the wires is up to several
centimeters, which is significantly longer than that of any Si3N4 wires reported previously.
Microscopy characterization reveals that the wires are single crystals, with a uniform diameter
of ∼200 nm. Intense visible photoluminescence was observed between 1.3 and 3.7 eV. The
wires could be useful in the fabrication of optoelectronic nanodevices and nanocomposites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Silicon nitride (Si3N4) is an important engineering ceramic for
a variety of applications due to its excellent thermo-mechanical
properties and chemical stability [1]. The material is also a
wide-band-gap semiconductor with a band gap of 5.3 eV. Mid-
gap levels can be introduced in Si3N4 by properly doping in
order to tailor its electronic/optic properties [2]. Similar to
the group III–V compounds, such as GaN and AlN, Si3N4 is
an excellent host material and is promising for applications
in optoelectronic devices for high temperature and radiation
environments.

Recently, one-dimensional Si3N4 has attracted extensive
attention because of its potential application in nanodevices
and nanocomposites. To date, one-dimensional Si3N4 in
the shapes of wires, rods and belts has been synthesized by
methods such as confined reaction [3], combustion [4, 5]
sol–gel [6], plasma-assisted hot-filament CVD [7], reduction–
nitridation [8], vapor–solid thermal reaction and thermal
decomposition/nitridation [9]. In spite of these tremendous
efforts, the growth of aligned ultra-long one-dimensional Si3N4

nanostructures, which can be used directly as devices [10],

5 Authors to whom any correspondence should be addressed.

has not been reported. In addition, ultra-long one-dimensional
Si3N4 could be more useful compared to short wires in some
particular applications, such as connections for devices and
reinforcements for composites.

In this paper, we report, for the first time, the growth
of aligned ultra-long single-crystalline α-Si3N4 nanowires.
The wires were synthesized via pyrolysis of a polymeric
precursor. The aligned wires, which possess perfect single-
crystal structures, uniform diameter and a smooth surface, are
up to several centimeters in length and perpendicular to the
substrate. Photoluminescence measurements reveal that the
Si3N4 wires exhibit a broad intense light emission in the range
1.3–3.7 eV.

2. Experimental details

Aligned Si3N4 nanowires were synthesized via pyrolysis of a
polyaluminasilazane precursor. The precursor was obtained
by reaction of commercially available polyureamethylvinylsi-
lazane (Ceraset, Kion Corporation, USA) and 0.5 wt% alu-
minum isopropoxide (AIP, Beijing Bei Hua Fine Chemicals
Company, Beijing, China). The obtained polyaluminasilazane,
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Figure 1. A representative XRD pattern of the as-synthesized
α-Si3N4 nanowires.

which is liquid as synthesized, was then solidified by heat treat-
ment at 260 ◦C for 0.5 h in N2. The obtained solid was crushed
into a fine powder by high-energy ball milling for 24 h, with
3 wt% of Cu (Beijing Bei Hua Fine Chemicals Company, Bei-
jing, China) added as a catalyst. The powder mixture was then
loaded into a high-purity alumina crucible with a graphite sheet
(Beijing Bei Hua Fine Chemicals Company, Beijing, China) as
a cover. The pyrolysis was carried out in a conventional tube
furnace with flowing ultra-high purity nitrogen at 0.1 MPa. The
powder mixture was heated to 1550 ◦C at 4 ◦C min−1 and held
there for 2 h, followed by furnace cooling. An experiment with
similar conditions was also carried out without the Cu additive
for comparison.

The products were characterized using field emission
scanning electron microscopy (SEM, JSM-6301, JEOL,
Tokyo, Japan), x-ray diffraction (XRD, Automated D/Max-
RB, Rigaku, Tokyo, Japan) with Cu Kα radiation (λ =
1.541 78 Å), and high-resolution transmission electron
microscopy (HRTEM, JEML-2011, JEOL, Tokyo, Japan)
equipped with energy-dispersive spectroscopy (EDS). The
photoluminescence (PL) spectrum of the wires was recorded
using a UV-lamp microzone Raman spectrometer under the
excitation of a 325 nm HeCd laser at room temperature.

3. Results and discussion

After removing the sample from the furnace, a large amount
of pyrolysis products was found on the graphite sheet which
was placed on top of the alumina crucible as a cover. The x-
ray diffraction pattern of the products (figure 1) reveals that
the products are hexagonal α-Si3N4. All diffraction peaks
correspond to hexagonal α-Si3N4, suggesting that there are no
other crystalline phases in the products.

Figures 2(a) and (b) are the optical images of the products
taken with a digital camera (Canon, IXUS 800IS, Japan). It
is seen that the wires are very long, up to several centimeters
(figure 2(a); the wires are detached from the graphite sheet),
and are well aligned along the direction perpendicular to the
graphite sheet (figure 2(b)). To the best of our knowledge, this
is the first time that Si3N4 wires have been grown so long and
in an aligned manner. Figures 2(c)–(f) are typical SEM images
of the obtained products under different magnifications. These
images reveal that (i) the wires are well aligned (figures 2(c)
and (d)); (ii) the wires exhibit a cylindrical shape (figures 2(e)
and (f)); (iii) the diameters of the wires are narrowly distributed
around 200 nm and within each individual wire the diameter
is uniform along its entire length; and (iv) the surfaces of the
wires are smooth and clean, without any attached particles.
It is estimated that ∼35 wt% of the raw materials has been
converted to the aligned nanowires. The process is highly
repeatable.

Further characterization of the morphology and crystalline
structure of the synthesized wires was carried out using TEM
and HRTEM. Figure 3(a) is a typical TEM image of the Si3N4

wires. The energy dispersive spectroscopy (EDS) spectrum
(figure 3(b)) obtained from an individual wire reveals that the
compositions of the wire are Si and N (the Cu signals in the
EDS spectrum come from the TEM grid used to support the
sample), confirming that the products are Si3N4. Figure 3(c) is
the selected area electron diffraction (SAED) pattern, which is
identical over the entire wire, indicating that the wire is a single
crystal. Figure 3(d) is the HRTEM image of the wires. The
HRTEM image reveals that the wires possess a perfect crystal
structure with few structural defects such as dislocations and
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Figure 2. (a) and (b) images of the products recorded using a digital camera. (c)–(f) typical SEM images of the wires under
different magnifications.
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Figure 3. (a) A typical TEM image of the aligned Si3N4 nanowires.
(b) A typical EDS spectrum obtained from an individual wire
recorded under TEM. (c) The SAED pattern recorded from a single
wire. (d) An HRTEM image of the Si3N4 wires. Both the SAED
pattern and the HRTEM image suggest the single-crystalline nature
of the as-grown wires with the growth direction along [001].

stacking faults. The surface of the wire possesses a ∼5 nm
amorphous layer, which is amorphous SiOx , as is often
observed in the synthesized Si3N4 nanowires [4]. The lattice
fringe spacing of 0.67 nm in figures 3(d) agrees well with
the spacing of (100) planes of bulk α-Si3N4, where a =
0.775 41 nm and c = 0.562 17 nm (JCPDS Card No. 41-0360).
Both the HRTEM image and the SAED pattern suggest that
the wire is α-Si3N4 phase and that it grew along the [001]
direction.

Careful examination of the tips and roots of the wires
reveals that there are no catalytic droplets at either position,
suggesting that the growth mechanism of the wires is
not vapor–liquid–solid (VLS) [11] or solid–liquid–gas–solid
(SLGS) [12]. The fact that the wires are only found on the
graphite sheet cover and not on the bottom of the crucible
suggests that the ultra-long wires reported here grow via a
vapor–solid (VS) process [13]. In this process, the precursor
was first decomposed into amorphous SiCN containing a small
amount of O at a temperature ∼1000 ◦C [14]. The amorphous
SiCN(O) was further decomposed and released CO and SiO
gases (the formation of oxide gases is due to the presence of
O) when pyrolyzed at 1550 ◦C [15]. These gaseous phases
then reacted with N2 to form Si3N4 wires and CO2 via
reaction (1) [16, 17]. The CO2 further reacted with the solid
C resulting from the decomposition of SiCNs to form CO
via reaction (2), which, in turn, was involved in reaction (1).
SiC is formed via reactions (3) [17] and (4) [18] when the
temperature is higher than ∼1480 ◦C. However, only Si3N4

was obtained in the current paper. This can be attributed to the
low PCO/PSiO ratio, which can shift the equilibrium boundary
between Si3N4 and SiC so that Si3N4 is stable up to higher
temperatures [15]. The length of the wires (figure 2(a)) can be
up to ∼4 cm after being grown for 2 h, which corresponds to
a growth rate of ∼0.33 mm min−1. Such a high growth rate

Figure 4. PL spectrum of α-Si3N4 wires under excitation of a
325 nm He–Cd laser at room temperature.

could be due to the high processing temperature (1550 ◦C),
which can significantly accelerate the vapor transportation
and precipitation processes. This point was confirmed since
nanowires synthesized at 1350 ◦C can only grow up to a few
millimeters. All possible reactions involved are listed below:

3SiO + 3CO + 2N2 → Si3N4 + 3CO2 (1)

C + CO2 → 2CO (2)

SiO + 2C → SiC + CO (3)

Si3N4 + 3C → 3SiC + 2N2 (4)

It is worth noting at this stage that the current result is
different from those we reported previously. In the previous
studies, pyrolysis of polymeric precursors with FeCl2 as the
catalyst resulted in the formation of nanobelts/nanowires, via
the solid–liquid–gas–solid (SLGS) mechanism [12]. Two
things are different between the current study and the previous
ones: (i) Cu instead of FeCl2 was used as the catalyst, and
(ii) a small amount of aluminum isopropoxide was added to
the raw materials. To examine the effect of Cu powder, the
precursor used here was also pyrolyzed in the same conditions
without Cu catalyst. In that case, no Si3N4 wire was grown,
which suggested that the Cu played a key role in the growth
of the ultra-long Si3N4 wires. Since no catalyst droplets were
observed at either the tips or the roots of the wires, we believe
that the Cu likely helped to generate Si-containing vapor during
pyrolysis.

The photoluminescence (PL) spectrum of the Si3N4

wires was measured using a UV-lamp microzone Raman
spectrometer under the excitation of a 325 nm HeCd laser for
200 s at room temperature. The power output of the laser is
35 mW and the beam focus diameter is 2–5 μm. Two strong
and broad peaks were observed between 1.3 and 2.9 eV and
between 2.9 and 3.7 eV, respectively (figure 4). These broad
bands can be further split into four peaks, centered at 1.56,
2.01, 2.45 and 3.1 eV, respectively. Previous studies suggested
that there are four types of defect in Si3N4: Si–Si and N–N
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bonds, and Si and N dangling bonds [19]. The Si–Si bond
forms a bonding orbital and an antibonding orbital, which form
an optical band gap of ∼4.5 eV. The silicon dangling bond
forms a state at about mid-gap, and the two nitrogen defect
states that give rise to levels within the gap, namely, N+

4 and
N0

2, are near the conduction and valence bands, respectively.
Based on our previous work [20], the main broad PL peak
at 2.45 eV arises from recombination processes at the silicon
dangling bonds, similar to those in amorphous silicon nitride.
The peak at 3.1 eV has a contribution from the recombination
between the Si–Si σ ∗ level and the N0

2 level or between the
N+

4 and the intrinsic valence band edge. The PL peaks at 1.56
and 2.01 eV can be attributed to the following recombination
processes: between the conduction edge of the intrinsic band
and N+

4 level, and between N+
4 and N0

2 states.

4. Conclusion

In summary, we report for the first time the growth of aligned
ultra-long α-Si3N4 nanowires on a graphite sheet. The wires
were synthesized by pyrolysis of polymeric precursors with Cu
as the catalyst. The length of the Si3N4 wires is up to several
centimeters. The wires possess a perfect crystal structure and
are uniform in size. Intense visible photoluminescence was
observed from the wires, which can be attributed to defects
in the α-Si3N4 structure. The wires could be useful in the
fabrication of optoelectronic nanodevices and nanocomposites.
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