

Journal of The Electrochemical Society

Blue-Green-Emitting Phosphor CaSc₂O₄?:?Tb^{3?+?}: Tunable Luminescence Manipulated by Cross-Relaxation

Zhendong Hao, Jiahua Zhang, Xia Zhang, Shaozhe Lu and Xiaojun Wang

J. Electrochem. Soc. 2009, Volume 156, Issue 3, Pages H193-H196. doi: 10.1149/1.3060382

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here

To subscribe to *Journal of The Electrochemical Society* go to: http://jes.ecsdl.org/subscriptions

© 2009 ECS - The Electrochemical Society

Blue-Green-Emitting Phosphor CaSc₂O₄:Tb³⁺: Tunable Luminescence Manipulated by Cross-Relaxation

Zhendong Hao, ^{a,c} Jiahua Zhang, ^{a,z} Xia Zhang, ^a Shaozhe Lu, ^a and Xiaojun Wang ^{a,b,*}

^aKey Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Blue-green $CaSc_2O_4:Tb^{3+}$ phosphors have been prepared by solid-state reaction. Under 254 or 276 nm light excitation, both blue and green emissions are observed, which are attributed to the characteristic 4f-4f transitions (${}^5D_{3,4}-{}^7F_J$, J=6, 5, 4, 3) of Tb^{3+} . The cross-relaxation from 5D_3 to 5D_4 states are investigated by spectroscopic and dynamic measurements. The luminescent color of $CaSc_2O_4:Tb^{3+}$ can be tuned from blue to green by manipulating the cross-relaxation. Moreover, efficient white light is generated for fluorescence lamps by blending the blue-green $CaSc_2O_4:Tb^{3+}$ with a red $CaSc_2O_4:Eu^{3+}$ phosphor. © 2009 The Electrochemical Society. [DOI: 10.1149/1.3060382] All rights reserved.

Manuscript submitted November 9, 2008; revised manuscript received December 8, 2008. Published January 15, 2009.

Nowadays, phosphors with high-efficiency, good thermal, and chemical stability and free environmental pollution have attracted more and more attention, due to their wide applications on modern lighting and display fields. ¹⁻⁵ Undoubtedly, rare-earth (RE) ions have always been playing an important role in the design and synthesis of phosphors due to their abundant emission colors based on 4f-4f or 5d-4f transitions. Among the RE ions, the trivalent terbium ion (Tb^{3+}) is well known as an efficient green-emitting activator for application in the display field such as Y₂O₂S:Tb³⁺ used in color television and LaPO₄:Ce³⁺,Tb³⁺ in fluorescence lamps. The green emissions of Tb³⁺-activated phosphors are originated from ${}^5D_4 - {}^7F_1$ transitions (J = 3, 4, 5, 6). Besides the green emission lines, the blue emissions from higher level ⁵D₃ are also observable, depending on the host lattice (phonon frequency as well as the crystal structure) and the doping concentration of Tb³⁺.^{7,8} To detect the blue emissions, host lattice with low phonon frequency and low doping concentration of Tb³⁺ are required to avoid the multiphonon relaxation and cross-relaxation occurring among $\mathrm{Tb^{3+}}$ ions, which will suppress the ${}^5\mathrm{D_3}{}^{-5}\mathrm{D_4}$ nonradiative relaxation. Therefore, $\mathrm{Tb^{3+}}$ activated efficient phosphors with various emission colors can be achieved by choosing a suitable host and appropriate concentration of Tb^{3+} .

Calcium scandates ($CaSc_2O_4$) has the calcium ferrite ($CaFe_2O_4$) structure, which is a crystal structure synthesized with a large divalent cation and a small trivalent cation. Recently, Shimomura et al. 11 reports that Ce^{3+} -activated $CaSc_2O_4$ shows intense green luminescence with a peak wavelength of 515 nm under excitation with blue light. Its emission intensity is comparable to the commercial yellow yttrium aluminum garnet (YAG):Ce phosphor, suggesting that Ce^{3+} -activated $CaSc_2O_4$ is a great candidate for color conversion of white-light emitting diodes. It also implies that $CaSc_2O_4$ has the potential to serve as a host material in phosphor applications.

In this paper, a series of Tb³+-doped CaSc₂O₄ phosphors have been prepared by solid-state reaction and the results on the cross-relaxation and tunable luminescence properties of CaSc₂O₄:Tb³+ as a function of Tb³+ concentration are reported. White light is generated by blending the blue-green CaSc₂O₄:Tb³+ with a red CaSc₂O₄:Eu³+ phosphor upon 254 nm excitation, showing CaSc₂O₄:Tb³+ phosphor can be a promising phosphor for tricolor fluorescence lamps.

Experimental

Synthesis of the powder samples was conducted by solid-state reaction. The starting materials, analytical grade, Sc_2O_3 , $CaCO_3$,

and Tb_4O_7 were homogenized by an agate mortar, pestled for 1 h, and placed in a crucible with a lid. The crucible was buried by carbon sticks and sintered at $1500^{\circ}C$ for 4 h in CO reducing atmosphere. The concentration of Tb^{3+} was varied from 0.1 to 12 mol %. The red $CaSc_2O_4{:}0.08Eu^{3+}$ phosphor for mixing with $CaSc_2O_4{:}0.03Tb^{3+}$ to realize white-light emission was also synthesized by the same process as described above.

The structure of sintered samples was identified by X-ray powder diffractometer [(XRD), Rigaku D/M AX-2500 V]. The morphology was investigated by using field-emission scanning electron microscopy [(FESEM), Hitachi S-4800]. The measurements of photoluminescence (PL) and photoluminescence excitation (PLE) spectra were performed by using a Hitachi F4500 fluorescent spectrometer. In fluorescence lifetime measurements, the fourth harmonic (266 nm) of a Nd–YAG laser (Spectra-Physics, GCR 130) was used as an excitation source, and the signals were detected with a Tektronix digital oscilloscope (TDS 3052).

Results and Discussion

XRD patterns of the CaSc_2O_4 :0.05Tb³⁺ sample are shown in Fig. 1. All the peaks are indexed based on orthorhombic structure and match well with JCPDS card no. 20-0234 [space group: *Pnam* (62), a = 9.46 Å, b = 11.12 Å, and c = 3.143 Å]. There are no impurity

Figure 1. XRD patterns of $\rm CaSc_2O_4:0.05Tb^{3+}$ sample sintered at 1500°C for 4 h.

^bDepartment of Physics, Georgia Southern University, Statesboro, Georgia 30460, USA

^cGraduate School, Chinese Academy of Sciences, Beijing 100039, China

^{*} Electrochemical Society Active Member.

^z E-mail: zhangjh@ciomp.ac.cn

Figure 2. FESEM image of CaSc₂O₄:0.05Tb³⁺ sample.

peaks in the XRD analysis, indicating the well-formed single phase of the sample. FESEM observation of the powders is depicted in Fig. 2. It exhibits that the particles are agglomeration in shape and have a good crystallinity due to high sintering temperature. The size of the particles is in the range of 500 nm to 3 μ m.

Figure 3 presents the PL and PLE spectra of the $CaSc_2O_4$:0.05Tb³⁺ sample. The excitation spectrum (dotted line, $\lambda_{em} = 542$ nm) consists of several broadbands with peaks at 276 nm (36,232 cm⁻¹), 258 nm (38,769 cm⁻¹), and 301 nm (33,222 cm⁻¹), respectively, originating from 4f⁸-4f⁷5d¹ transitions allowed by the electric dipolar parity. These broad excitation bands cannot be assigned to $Tb^{3+} \leftarrow O^{2-}$ charge-transfer (CT) transition because the CT states have much higher energy (\sim 60,000 cm⁻¹) than 5d states of Tb^{3+} . Under 276 nm (dashed line) or 254 nm (solid line) excitation, the emission spectra yield both blue and green emissions in the regions of 350–480 and 480–650 nm, which are due to the $^5D_3-^7F_J$ (J=3, 4, 5, 6) and $^5D_4-^7F_J$ (J=3, 4, 5, 6) transitions of Tb^{3+} ions, respectively. Specifically, the emission bands at 380, 414, 436, and 456 nm are attributed to the emission transitions of $^5D_3 \rightarrow ^7F_6$, $^5D_3 \rightarrow ^7F_5$, $^5D_3 \rightarrow ^7F_4$, and $^5D_3 \rightarrow ^7F_3$, respectively, and 488, 542, 584, and 619 nm emissions to the transitions of 5D_4

Figure 3. PL and PLE spectra of $CaSc_2O_4:0.05Tb^{3+}$: $\lambda_{em}=542$ nm (dotted line), $\lambda_{ex}=276$ nm (dashed line), and $\lambda_{ex}=254$ nm (solid line).

Figure 4. PL spectra ($\lambda_{ex} = 276 \text{ nm}$) of $CaSc_2O_4$: xTb^{3+} (x = 0.001-0.12).

 \rightarrow $^7F_6,~^5D_4$ \rightarrow $^7F_5,~^5D_4$ \rightarrow $^7F_4,~$ and 5D_4 \rightarrow $^7F_3,~$ respectively. Among these transitions, the green emission 5D_4 \rightarrow 7F_5 at 542 nm is the most intense, which is a magnetic dipole transition and satisfies the selection rule $\Delta J = \pm 1$. In order to investigate the concentration-dependent luminescent properties of Tb3+ ion in $CaSc_2O_4$, a series of $CaSc_2O_4$: xTb^{3+} (x = 0.001-0.12) have been prepared and their PL emission spectra ($\lambda_{ex} = 276$ nm) are given in Fig. 4. It shows that the relative intensities of ${}^5D_3 - {}^7F_J$ and ${}^5D_4 - {}^7F_J$ transitions are strongly dependent on the Tb³⁺ concentration. As the Tb³⁺ concentration increases, the emission intensities of ${}^{5}D_{3} - {}^{7}F_{I}$ decrease, whereas the intensities of ${}^5D_4 - {}^7F_I$ increase. This is mainly due to the cross-relaxation that is Tb³⁺ concentration dependent, and the process can be described as Tb^{3+} (5D_3) + Tb^{3+} (7F_6) \rightarrow Tb³⁺(⁵D₄) + Tb³⁺(⁷F₀). 14,15 It is evidenced that the crossrelaxation enhances the decay from the high energy level ⁵D₃ to the low energy level ⁵D₄. An energy level scheme illustrating the characteristic emissions and cross-relaxation of Tb³⁺ in CaSc₂O₄ is explained in Fig. 5a.

In principle, the cross-relaxation can shorten the lifetime of 5D_3 . Both fluorescence lifetimes of 5D_3 (τ_1) and 5D_4 (τ_2) are measured and represented in Fig. 6. τ_2 remains nearly unchanged, indicating the nonexistence of Tb^{3+} concentration quenching within the range of Tb^{3+} contents interested in this work. Although τ_1 , as expected, reduces with increasing Tb^{3+} concentration, demonstrating the occurring of cross-relaxation from 5D_3 excited state to 5D_4 . The cross-relaxation rate (W_{CR}) can be obtained using

Figure 5. Schematic diagrams of Tb^{3+} and Eu^{3+} energy levels in $CaSc_2O_4$. Cross-relaxation and their characteristic emissions are also illustrated.

Figure 6. Fluorescence lifetimes of series of $CaSc_2O_4:xTb^{3+}$ (x = 0.001-0.12) as a function of Tb^{3+} concentration.

$$W_{\rm CR} = \frac{1}{\tau_1} - \frac{1}{\tau_{10}}$$
 [1]

where τ_{10} is the fluorescence lifetime of 5D_3 at the lowest doping concentration of Tb³⁺ (0.1 mol %) where the cross-relaxation is negligible. τ_{10} is then written as

$$\tau_{10} = \frac{1}{W_0 + \gamma_1}$$
 [2]

where W_0 is the multiphonon relaxation rate and γ_1 is the radiative transition rate of 5D_3 , both of which are Tb^{3+} concentration independent. Figure 7 demonstrates the dependence of W_{CR} on Tb^{3+} concentration with a nearly linear relationship. Thus, the energy transfer rates can be written as

$$W_{\rm CR} = Ax \tag{3}$$

where A is a proportional constant and x is the concentration of Tb³⁺ ions. It is known that the multiphonon relaxation rate is independent of concentration for the luminescent centers. Therefore, using Eq. 1-3, τ_1 can be fitted by the function as $\tau_1 = 1/(Ax + B)$ as represented in Fig. 6 (solid line), where B is the sum of W_0 and γ_1 .

Figure 7. Dependence of the energy transfer rate $(W_{\rm CR})$ in CaSc₂O₄:xTb³⁺ (x = 0.001-0.12) on Tb³⁺ concentration.

Figure 8. Dependence of the energy transfer efficiency η_{CR} in $CaSc_2O_4$: xTb^{3+} (x=0.001-0.12) on Tb^{3+} content x.

Furthermore, the cross-relaxation efficiency (η_{CR}) for 5D_3 to 5D_4 in $CaSc_2O_4$: xTb^{3+} is also calculated by using

$$\eta_{\rm CR} = 1 - \frac{\tau_1}{\tau_{10}} \tag{4}$$

and is illustrated in Fig. 8. With increasing Tb³⁺ doping content, the relaxation efficiency increases gradually up to 84%.

Owing to cross-relaxation, the intensity ratios ($R_{G/B}$) of green to blue emissions depends on Tb³⁺ concentration, it can be written as

$$R_{\rm G/B} = \frac{R_0(W_{\rm CR} + W_0)\tau_2}{W_0\tau_{20}}$$
 [5]

where R_0 is the initial value of the ratio and τ_{20} is the lifetime of 5D_4 at the lowest concentration of Tb^{3+} ions. τ_2 and τ_{20} can be eliminated because τ_2 remains nearly unchanged with different Tb^{3+} concentrations (Fig. 6). Therefore Eq. 5 is rewritten as

$$\frac{R_{\rm G/B}}{R_0} = 1 + \frac{W_{\rm CR}}{W_0}$$
 [6]

where $R_{\rm G/B}$ as well as R_0 at different Tb³⁺ concentrations can be obtained directly from the emission spectra (Fig. 4). $W_{\rm CR}$ can be calculated according to Eq. 1. Hence, the relationship of $R_{\rm G/B}/R_0$ and $W_{\rm CR}$ is obtained as plotted in Fig. 9. One can see that the dependence of $R_{\rm G/B}/R_0$ on $W_{\rm CR}$ is close to a linear relationship, indicating a strong dependence of $R_{\rm G/B}$ on Tb³⁺ concentration.

The excitation spectra (Fig. 3) shows that CaSc₂O₄:Tb³⁺ phosphors can also be effectively excited by 254 nm light for the use of fluorescence lamps. Figure 10 illustrates the emission spectra of CaSc₂O₄:xTb³⁺ under 254 nm excitation with the same profile to that under 276 nm excitation. Inset (a) of Fig. 10 shows the emission spectra of $CaSc_2O_4$:0.08Tb³⁺ compared to the commercial lamp phosphor LaPO₄:Ce,Tb. The integral PL intensity of CaSc₂O₄:0.08Tb³⁺ is 34% of LaPO₄:Ce,Tb phosphor, indicating that CaSc₂O₄:Tb³⁺ is a potential candidate for fluorescence lamps. The CIE 1931 chromaticity coordinates for the CaSc₂O₄:xTb³⁺ phosphors ($\lambda_{ex} = 254$ nm) are shown in inset (b) (solid squares). It is observed that the CIE coordinates change from x = 0.19, y = 0.19 to x = 0.22, and y = 0.43 by changing the doping concentration of Tb³⁺ to x = 0.26, y = 0.56. The corresponding luminescent color can be tuned from blue to blue-green to green. In order to white-light emission, red emission phosphor, CaSc₂O₄:0.08Eu³⁺ is used to mix with blue-green CaSc₂O₄:0.03Tb³⁺ phosphor. Red CaSc₂O₄:Eu³⁺ phosphor is also an interesting luminescent material and will be reported on later

Figure 9. Dependence of $R_{G/B}/R_0$ on W_{CR} .

(Fig. 5b which shows the main energy levels of Eu^{3+} in $CaSc_2O_4$). The PL spectra of the mixed phosphor with different ratios are presented in Fig. 11. For comparison, the emission spectra of CaSc₂O₄:0.08Eu³⁺ and CaSc₂O₄:0.03Tb³⁺ are also included. Obviously, the red regions of the emission spectra of CaSc₂O₄:0.03Tb³⁺ (curve a) have been enhanced gradually by increasing the amount of CaSc₂O₄:0.08Eu³⁺ phosphors whose emission bands (curve e) are just located at 590 nm ($^5D_0 \rightarrow {}^7F_1$) and 611 nm ($^5D_0 \rightarrow {}^7F_2$), respectively. The CIE coordinates of two phosphor blends with the ratios of 1:1, 1:2, and 1:3 are presented in inset (b) of Fig. 10 (hollow triangles). For the ratio of 1:1 and 1:2, the higher energy levels 5D3 and 5D4 of Tb3+ have comparable intensity with the energy level 5D_0 of Eu³⁺ (curves b and c), resulting in a white-light emission with the CIE coordinates of x = 0.35, y = 0.41, and x = 0.41, and x= 0.44, y = 0.39. However, the CIE coordinate of the ratio of 1:3 (x = 0.51, y = 0.38) enters into the red region due to the dominant red emission (curve d). It is concluded that the white-light emission for fluorescence lamps can be realized by blending CaSc₂O₄:Tb³⁺ and CaSc₂O₄:Eu³⁺ phosphors with an appropriate ratio.

Figure 10. PL spectra ($\lambda_{ex} = 254 \text{ nm}$) of $CaSc_2O_4$: xTb^{3+} (x = 0.001-0.12). Insets: (a) The emission spectra of $CaSc_2O_4$: $0.08Tb^{3+}$ compared to the commercial lamp phosphor LaPO₄:Ce,Tb; (b) CIE chromaticity coordinates of $CaSc_2O_4$: xTb^{3+} (solid squares), and the mixture of two phosphors of $CaSc_2O_4$: $0.03Tb^{3+}$ and $CaSc_2O_4$: $0.08Eu^{3+}$ (hollow triangles).

Figure 11. PL spectra of (a) $CaSc_2O_4$:0.03 Tb^{3+} , (e) $CaSc_2O_4$:0.08 Eu^{3+} , and (b, c, d) the mixture of two phosphors with different ratios.

Conclusions

The blue-green phosphors $CaSc_2O_4:xTb^{3+}$ (x=0.001-0.12) have synthesized by solid-state reaction at $1500\,^{\circ}C$. Intense blue emissions in the regions of 350-480 nm $[^5D_3-^7F_J$ (J=3,4,5,6) transitions] and green emissions of 480-650 nm $[^5D_4-^7F_J$ (J=3,4,5,6) transitions] of Tb^{3+} ions are observed. In particular, the luminescence color of $CaSc_2O_4:Tb^{3+}$ can be tuned from blue to green through cross-relaxation by controlling Tb^{3+} concentrations. The cross-relaxation efficiency from 5D_3 to 5D_4 can be achieved as 84%. The integral PL intensity of $CaSc_2O_4:0.08Tb^{3+}$ is 34% of the commercial lamp phosphor $LaPO_4:Ce,Tb$. By mixing the blue-green $CaSc_2O_4:Tb^{3+}$ with a red $CaSc_2O_4:Eu^{3+}$, a white-light phosphor can be obtained for the application in fluorescent lamps.

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (10834006, 10774141) and the MOST of China (grants no. 2006CB601104, and no. 2006AA03A138)

Chinese Academy of Sciences assisted in meeting the publication costs of this article.

References

- L. Ma, D. J. Wang, Z. Y. Mao, Q. F. Lu, and Z. H. Yuan, Appl. Phys. Lett., 93, 144101 (2008).
- H. L. Li, R. J. Xie, N. Hirosaki, and Y. Yajima, J. Electrochem. Soc., 155, J378 (2007).
- S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, J. Lumin., 129, 50 (2009).
- 4. W. N. Wang, F. Iskandar, K. Okuyama, and Y. Shinomiya, Adv. Mater. (Weinheim, Ger.), 20, 3422 (2008).
- A. A. Setlur, W. J. Heward, M. E. Hannah, and U. Happek, *Chem. Mater.*, 20, 19 (2008).
- 6. R. P. Rao, J. Electrochem. Soc., 150, H165 (2007).
- 7. G. Blasse and B. C. Grabmaier, *Luminescence Materials*, Chap. 4-5, Springer-Verlag, Berlin (1994).
- 8. A. Nag and T. T. N. Kutty, Mater. Chem. Phys., 91, 524 (2005).
- K. S. Sohn and N. Shin, *Electrochem. Solid-State Lett.*, 5, H21 (2002).
 J. R. Carter and R. S. Feilgelson, *J. Am. Ceram. Soc.*, 47, 141 (1964).
- 11. Y. Shimomura, T. Kurushima, and N. Kijima, J. Electrochem. Soc., 154, J234 (2007)
- H. Najafov, Y. Satoh, S. Ohshio, A. Kato, and H. Saitoh, *Jpn. J. Appl. Phys.*, *Part 1*, 43, 7111 (2004).
- L. J. Nugent, R. D. Baybarz, J. L. Burnett, and J. L. Ryan, J. Phys. Chem., 77, 1528 (1973).
- 14. G. Blasse, Rev. Inorg. Chem., 5, 319 (1983).
- D. J. Robins, B. Cockayne, B. Lent, and J. L. Glasper, Solid State Commun., 20, 673 (1976).