
Extremal asymmetric universal cloning machines
Mingming Jiang and Sixia Yu 
 
Citation: J. Math. Phys. 51, 052306 (2010); doi: 10.1063/1.3380527 
View online: http://dx.doi.org/10.1063/1.3380527 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v51/i5 
Published by the American Institute of Physics. 
 
Related Articles
Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits 
Appl. Phys. Lett. 101, 042604 (2012) 
Long coherence time of spin qubits in 12C enriched polycrystalline chemical vapor deposition diamond 
Appl. Phys. Lett. 101, 012405 (2012) 
Perfect spin-filter and quantum-signal generator in a parallel coupled multiple triple-quantum-dots device 
J. Appl. Phys. 111, 124510 (2012) 
Bounding the distance of quantum surface codes 
J. Math. Phys. 53, 062202 (2012) 
Fano antiresonance and perfect spin-filtering in a diamondlike quantum network device: Nonequilibrium Green’s
function approach 
J. Appl. Phys. 111, 094512 (2012) 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 11 Sep 2012 to 159.226.165.151. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1570277243/x01/AIP/MapleSoft_JMPCovAd_1640x440banner_05_30_2012/Physics_advert_May2012.jpg/7744715775302b784f4d774142526b39?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Mingming Jiang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Sixia Yu&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3380527?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v51/i5?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4739454?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4731778?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4730766?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4726034?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4712024?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


Extremal asymmetric universal cloning machines
Mingming Jiang1,2,a� and Sixia Yu1

1Department of Modern Physics, University of Science and Technology of China, Hefei
230027, People’s Republic of China
2Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics,
and Physics, Chinese Academy of Sciences, Changchun 130033, People’s Republic of China

�Received 7 May 2009; accepted 12 March 2010; published online 25 May 2010�

The trade-offs among various output fidelities of asymmetric universal cloning
machines are investigated. First we find out all the attainable optimal output fideli-
ties for the 1 to 3 asymmetric universal cloning machine and it turns out that there
are two kinds of extremal machines which have to cooperate in order to achieve
some of the optimal output fidelities. Second we construct a family of extremal
cloning machines that includes the universal symmetric cloning machine as well as
an asymmetric 1 to 1+N cloning machine for qudits with two different output
fidelities such that the optimal trade-off between the measurement disturbance and
state estimation is attained in the limit of infinite N. © 2010 American Institute of
Physics. �doi:10.1063/1.3380527�

A single quantum can neither be cloned1 nor be broadcasted,2 but it can be approximately
cloned universally for qubits3,4 and for qudits,5–7 or probabilistically,8 symmetrically or
asymmetrically,9–11 and experimentally.12 The quantitative boundary between what is possible and
impossible hinted by the no-cloning theorem has been explored in a few cases including the
optimal symmetric cloning machines6,9 and the optimal 1�2 and 1�3 asymmetric cloning
machines.13

A universal 1�N cloning machine is a quantum mechanical process with one input and N
outputs with the fidelity between each output state and the input state being independent of the
input state. Symmetric cloning machines, which are special cases of the asymmetric cloning
machines, are characterized by the unique maximal attainable output fidelity. For asymmetric
cloning machines optimal trade-offs among the output fidelities in certain range of values have
been explored.13 In addition, a 1 to 1+N asymmetric cloning machine with two different output
fidelities for qubits has also been constructed which, in the large N limit, balances the inequality
of measurement disturbance and state estimation.14

In this letter we shall present at first the complete trade-off among three output fidelities of the
universal 1 to 3 cloning machine for qudits. It turns out that there are two kinds of extremal
cloning machines and for some range of output fidelities the two extremal cloning machines must
cooperate to attain the optimal fidelities instead of a single “optimal” cloning machine. Second we
construct also a 1 to 1+N cloning machine for qudits, which belongs to a family of extremal
cloning machines in the symmetric subspace, that saturates Banaszek’s inequality of measurement
disturbance and state estimation.

In the following we consider only qudits, i.e., d-level systems whose Hilbert space is spanned
by ��n��n=0

d−1. Let us start with a trivial case to establish some notations, namely, a 1 to 1 universal
cloning machine, which can be represented by a completely positive map ��C1���, where �
represents the density matrix of a pure state ��� of a single qudit which is labeled by A. The output
fidelity, taking into account of the universality, reads
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FA =	 Tr��C1����d� =
d + fA

d�d + 1�
, �1�

where fA=Tr�QRA�RA� with QRA=IR � C1��RA� being a subnormalized state �Tr QRA=d� of the
composite system of a reference qudit R and the original qudit A and �RA denoting the density
matrix of a �subnormalized� maximally entangled state ���=
n�nn� of the composite system RA.
It is obvious that the output fidelity FA ranges from 1 / �d+1� to 1 because fA takes values from 0
to d2. The maximal output fidelity arises from the identity map I���=� and the minimal fidelity
arises from the fact that the cloning machine must be a physical process allowed by the principle
of quantum mechanics, i.e., C��� is a completely positive map. In the case of d=2 the minimal
output fidelity is achieved by the optimal universal NOT gate.

The situation is similar for cloning machines producing two or more copies. Let us consider
now a 1�2 universal cloning machine, which can be represented by a completely positive map C2

from HA to HA � HB. Its two output fidelities FA and FB are determined by the expectation values
fA and fB of two observables �RA and �RB in the subnormalized state QRAB=IR � C2��RA�. Thus
the bound of the optimal output fidelities is bounded by all the possible expectation values of two
observables �RA and �RB when the state runs over all possible states of composite system RAB.

Obviously the range of two observables �RA and �RB is spanned by 2d states ���RA�k�B and
���RB�k�A with k=0,1 , . . . ,d−1, from which an orthonormal basis can be constructed,

��k
�� =

1
�2�d � 1�

����RA�k�B � ���RB�k�A� . �2�

It is not complete thus 
k�k
++�k

−�I3, where �k
� denotes the projector of the corresponding state

and I3 is the identity matrix for 3-qudit. When averaged in an arbitrary 3-qudit state QRAB with
normalization Tr QRAB=d, the incompleteness condition leads to

��fA + �fB�2

2�d + 1�
+

��fA − �fB�2

2�d − 1�
� d . �3�

This inequality can be regarded as an uncertainty relationship between observables �RA and �RB.
The expectation values that saturate the inequality Eq. �3� for a 3-qudit state corresponding to the
optimal 1 to 2 asymmetric cloning machine13 without the restriction that the coefficients be
non-negative. Thus the trade-off between two output fidelities FA and FB can be plotted as in Fig.
1. It should be pointed out that given one of the output fidelities in the interval between 1
−1 /d�d+1� and 1, the other output fidelity assumes a minimal value which is greater than the
minimal possible fidelity 1 / �d+1�.

(
1

d+1 ,

1
d+1

)

1
d

1
d

FA

FB

d2+d−1
d(d+1)

d2+d−1
d(d+1)

(1, 1)

FIG. 1. �Color online� The trade-off between two output fidelities of 1 to 2 asymmetric cloning machine. The shaded area
which is bounded by two axes and part of an ellipse contains all possible output fidelities.
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Let us now consider a 1 to 3 asymmetric universal cloning machine, which can be represented
by a quantum operation C3 with 1 input and 3 outputs. In this case three output fidelities FA, FB,
and FC are determined through Eq. �1� by the expectation values fA, fB, and fC of three observ-
ables �RA, �RB, and �RC in a 4-qudit state QRABC=IR � C3��RA� which is subnormalized as
Tr QRABC=d. To explore all the possible output fidelities, we shall at first find out all the possible
expectation values of those three observables in the same state and then we construct asymmetric
cloning machines that attain those optimal values.

At first we notice that the Hilbert space of 4-qudit can be decomposed into three orthogonal
subspaces,

H4 = V+ � V− � V0, �4�

where the subspace V0 is the orthogonal complement of V+ � V− with subspaces V� spanned,
respectively, by bases,

��kl
a�� =

I4 + �aY + �2aY2

�3�d � �3�a0 − 1��
���RA��kl���BC, �5�

where I4 is the identity operator for 4-qudit and Y denotes the cyclic permutation operator acting
only on three qudits A ,B ,C with effects Y�m ,n ,k�ABC= �k ,m ,n�ABC for arbitrary m ,n ,k and leav-
ing the qudit R unchanged, and ��kl���= ��kl�� �lk�� /�2 for k� l and ��kk�+�= �kk�.

Subspace V+ � V− is the range of three observables �RA, �RB, and �RC and therefore all the
expectation values of these three observables are zero in V0. Furthermore, we have
��kl

a+��R	��mn
b− �=0 �	=A ,B ,C�. As a result all the attainable expectation values of three observ-

ables �R	�	=A ,B ,C� are those convex combinations of these attainable values in pure states in
V� and 0, the value attained in V0. In other words if we have found out two sets of all the
attainable expectation values under the pure states in subspaces V� then the complete set of
attainable values is the convex hull of these two sets and 0.

For an arbitrary pure �subnormalized� state ���� in V� with �� ���=d we denote f	�

= �����R	���� for 	=A ,B ,C and fA� as a d�d�1� /2-dimensional complex vector whose com-
ponents are ��� ���RA��kl���BC with k , l=0,1 , . . . ,d−1 and similarly for fB� and fC�. Obviously
f	�= �f	��2 for all 	=A ,B ,C. Since V� is only a subspace one has



a=0

2



k
l

d−1

��kl�
a ���kl�

a � � I4, �6�

which leads to



	=A,B,C

f	� �
�fA� + fB� + fC��2

d � 2
� d�d � 1� �7�

when averaged in the state ����, respectively. Given the lengths of three complex vectors fA, fB,
and fC, the total length �fA+ fB+ fC� is bounded above by �fA�+ �fB�+ �fC� and bounded from below by
the maximum among 0, �fA�− �fB�− �fC�, �fB�− �fA�− �fC�, and �fC�− �fB�− �fA�. Thus it follows from Eq.
�7� that

x2 + y2 + z2 −
�x + y + z�2

d + 2
� d�d − 1� �8�

in the symmetric subspace V+, where we have denoted x=�fA, y=�fB, and z=�fC for conve-
nience, and in the antisymmetric subspace V− the expectation values satisfy either any one of the
following inequalities:

x2 + y2 + z2 +
�x + y − z�2

d − 2
� d�d + 1� , �9a�
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x2 + y2 + z2 +
�x − y + z�2

d − 2
� d�d + 1� , �9b�

x2 + y2 + z2 +
�x − y − z�2

d − 2
� d�d + 1� , �9c�

together with restrictions z
x+y, y
x+z, and x
z+y, respectively, or lie within the sphere,

x2 + y2 + z2 � d�d + 1� �10�

restricted by the conditions

x � y + z, y � x + z, z � x + y . �11�

These bounds specify the range of all the possible expectation values of �R	 �	=A ,B ,C� in pure
states. Thus all the possible expectation values of three observables �R	 �	=A ,B ,C� in arbitrary
states are all possible convex combinations of those bounds, i.e., the boundary is the convex hull
of those four ellipsoids defined in Eq. �8� and Eqs. �9a�–�9c� and the partial sphere in Eq. �10�,
which is explicitly plotted in the Fig. 2. We note that the restricted sphere equation �10� is
contained in the convex hull for d
3 and in the case of d=2 the boundary is the convex hull of
Eqs. �8� and �10�. Since the function �x is a one-to-one concave function, the boundary for the
fidelities F	 has essentially the same structure as the boundary for �f	 �	=A ,B ,C�.

In the following we shall prove that the surface of the convex hull as plotted in Fig. 2 is
attainable by explicitly constructing the universal cloning machines with the desired output fideli-
ties. To do so we have only to construct the cloning machines that saturate those four inequalities
Eqs. �8� and �9a�–�9c�, respectively. We consider a system of five qudits labeled with A, B, C, E,
and F and define two unitary evolutions as

U��mA0BCEF� =� 2

d�d � 1�
�	 + �Y + Y2�

�m�A����BE���CF � ���CE���BF� , �12�

where Y is the permutation acting on ABC as before and 	, �, and  are real numbers satisfying

	2 + �2 + 2 �
2

d
�	� + � + 	� = 1. �13�

It is easy to check that the cloning machines defined by U� are universal. For convenience we
denote x�=d	� ��+�, y�=d�� �	+�, and z�=d� ��+	�.

d

0
1

1
1

√
d(d+1)

2

1

d

√
d(d+1)

2

1

0

√d+
1

d−
1

√d−
1

d+
1

√
d
2 −

1

1

FIG. 2. �Color online� The convex hull of four ellipsoids with colored parts being the extremal points.
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We consider at first the cloning machine U+. In the case of x+ ,y+ ,z+
0 we have fA=x+
2, fB

=y+
2, and fC=z+

2 and the, inequality, Eq. �8� becomes an equality. Thus we have constructed an
extremal cloning machines U+ that saturates the inequality, Eq. �8�. As will see in the following
discussions the extremal cloning machines do not always produce the optimal output fidelities. In
the case of non-negative 	 ,� , the unitary evolution U+ defines exactly the asymmetric cloning
machine investigated in Ref. 13 with optimal output fidelities corresponding to the central golden
area in Fig. 2. In the case of two negative and one positive coefficients among 	 ,� , while
keeping x+ ,y+ ,z+ non-negative, U+ also gives rise to the optimal cloning machines with fidelities
corresponding to three small golden areas in Fig. 2. The boundaries of those four golden regions
are �d+1�x=y+z, �d+1�y=x+z, and �d+1�z=x+y.

Next we consider the cloning machine U−. Three output fidelities of the cloning machine U−

are fA=x−
2, fB=y−

2, and fC=z−
2, and they saturates the inequality Eq. �9a� in the case of x−, y−
0,

and z−�0. Similarly the inequalities Eqs. �9b� and �9c� are saturated by choosing x−, z−
0 and
y−�0 or y−, z−
0 and x−�0. These machines therefore attain the optimal fidelities in the blue,
green, and red regions in Fig. 2.

In the stripped white regions in Fig. 2 the optimal output fidelities are attained by neither of
these two extremal machines U�. Instead the optimal values can be achieved by a suitable coop-
eration of U�. Since any value in the stripped white regions is a convex combination of the
extremal values in the colored regions, it can be attained by mixing properly those extremal
cloning machines achieving the extremal values. For example, let �x ,y ,z�= p�x ,y ,z�G+ �1− p�
��x ,y� ,z�B be an optimal value in a stripped white region, that is, a convex combination of two
optimal values in the blue and golden regions. Let UG and UB be the extremal machines described
above then by applying the machine UG with probability q and UB with probability 1−q we obtain
the desired optimal fidelity �x ,y ,z� where q is uniquely determined by �qy+ �1−q�y��2= py2+ �1
− p�y�2.

At last we consider 1 to N asymmetric universal cloning machines which can be represented
by a quantum operation CN with one input and N outputs that are labeled from 1 to N. Each output
fidelity Fn is determined through Eq. �1� by the expectation value fn of the observable �0n in the
subnormalized state Q0N=I0 � CN��01�. In what follows we shall find out a partial bound for the
expectation values of �0k and construct the cloning machine attaining this bound. A complete
bound even in the simplest case N=4 is unattainable so far.

The range of N observables �0k is spanned by the following NdN−1 states �not normalized�:

���
a� = Pa���01���23. . .N, Pa =

1

N


k=0

N−1

�kaXk, �14�

where X is the permutation acting on the last N qudits according to X�n1 ,n2 , . . . ,nN�
= �n2 ,n3 , . . . ,nN ,n1�, a=0,1 , . . . ,N−1, and ����23. . .N� is an arbitrary basis for the last N−1 qudits.
Let ��� be an arbitrary pure �N+1�-qudit state the Gramm matrix of these NdN−1+1 states
���� , ���

a�� should be semipositive definite, i.e.,


d f1 f2 f3 ¯ fN

f1
† Tr1 P0 0 0 ¯ 0

f2
† 0 Tr1 P1 0 ¯ 0

f3
† 0 0 Tr1 P2 ¯ 0

] ] ] ] � ]

fN
† 0 0 0 ¯ Tr1 PN−1

� 
 0, �15�

where fa+1 denotes a dN−1-dimensional vector with components �� ���
a� for a=0,1 , . . . ,N−1.

By partitioning the Hilbert space of the last N−1 qudits into symmetric subspace, which is
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spanned by all the symmetric states �n�23. . .N, and its orthogonal complement, the Gramm matrix
assumes a quasidiagonal form, and in the symmetric subspace the non-negativeness of the Gramm
matrix gives rise to



k=1

N

fk −
1

d + N − 1
�


k=1

N

�fk�2

� d�d − 1� �16�

by noticing N Tr1 P0=d+N−1 while N Tr1 Pa=d−1 in the symmetric subspace. Here we have
denoted fk= �fk�2.

Let us now construct the cloning machine whose output fidelities saturate the inequality
above. Consider the unitary evolution defined by

U	�m�1�0�23. . .N�0�2�3�. . .N� = 

a=0

N−1
	aXa

��d + N − 1

N
� �m�1


n
�n�23. . .N�n�2�3�. . .N�, �17�

with real numbers 	a satisfying



a=0

N−1

	a
2 +

2

d


a�b

N−1

	a	b = 1. �18�

As long as xa+1= �d−1�	a+
a	a
0 for all a=0,1 , . . . ,N−1, the inequality Eq. �16� is saturated
with fidelities given by fa=xa

2. Obviously the symmetric universal 1 to N cloning machine is a
special case.

In addition if we take 	a=� / �d+N−1� for a=1,2 , . . . ,N−1 and 	0=	+� / �d+N−1� with
	 ,� being non-negative, there are only two different output fidelities f = �d	+��2 and g= �	
+��2. The normalization condition, Eq. �18�, yields

��f − �g�2 = �d − g��d − 1� +
�d�g − �f�2

d + N − 1
, �19�

which saturates the optimal trade-off between the information gain and state disturbance14 when N
tends to infinity. The last N−1 outputs with the same fidelity g provide the information gain
because of the equivalency between the state estimation and symmetric cloning with an infinite
outputs,15 while the first output fidelity f characterizes the disturbance suffered in estimating the
quantum state.

It should be pointed out that Eq. �16� need not to be satisfied by all the optimal output
fidelities. That is, to say, there are some output fidelities that will fall outside the hype ellipsoid
given by Eq. �16�. Therefore, the cloning machine U	 does not always produce the optimal output
fidelities. We believe that �without proof� when 	a
0 �a=0,1 , . . . ,N−1� the asymmetric cloning
machine Us is optimal which means the bound equation �16� holds true for this special range of
output fidelities.

We acknowledge the financial support of NNSF of China �Grant No. 10675107�.
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