Cite this: Chem. Commun., 2011, 47, 12376–12378

www.rsc.org/chemcomm

COMMUNICATION

A new emission band of Eu^{2+} and its efficient energy transfer to Mn^{2+} in $Sr_2Mg_3P_4O_{15}:Mn^{2+}$, Eu^{2+}

Jinying Yu,^{ab} Zhendong Hao,^{*a} Xia Zhang,^a Yongshi Luo^{ab} and Jiahua Zhang^{*a}

Received 13th September 2011, Accepted 8th October 2011 DOI: 10.1039/clcc15657h

 Eu^{2+} singly and Eu^{2+} , Mn^{2+} co-doped $Sr_2Mg_3P_4O_{15}$ exhibit not only the well known blue emission band of Eu^{2+} peaking at 448 nm but also a new band at 399 nm in violet. They are attributed to Eu^{2+} on different Sr^{2+} sites. The Eu^{2+} for the violet band can transfer energy to the red emitting Mn^{2+} more efficiently than Eu^{2+} for the blue band. The new Eu^{2+} band could enable $Sr_2Mg_3P_4O_{15}:Mn^{2+}$, Eu^{2+} to be a promising phosphor for enriching the red component of white LEDs.

The solid state lighting sources based on white light emitting diodes (LED) fabricated using blue and/or near UV LED chips coated with phosphors have been widely studied in recent years.^{1–3} The white LEDs employing near UV LED chips with tri-color phosphors have the advantage of less shift of color point against forward current because the white light is completely phosphor converted rather than the case of blue LED combined with a yellow emitting YAG:Ce³⁺ phosphor.¹ Eu²⁺ activated phosphate is a kind of highly efficient blue emitting phosphors for near UV LED excitation.^{4–7} However, white light generation suffers from lack of bright red emitting phosphate. To solve this problem, Mn^{2+} was codoped into some blue emitting phosphates and an intense red emission of Mn^{2+} was additionally achieved through energy transfer from Eu²⁺ to Mn^{2+} .^{6,7}

The blue emission of $Sr_2Mg_3P_4O_{15}:Eu^{2+}$ was first reported by Hoffman in 1968.⁸ Recently, Ngee *et al.* demonstrated that $Sr_2Mg_3P_4O_{15}:Eu^{2+}$ can be excited efficiently by near UV to emit strongly in blue (peaking at 448 nm) and the luminescence temperature characteristics are much better than those of commercial YAG:Ce³⁺, implying its promising application as a blue phosphor for white LEDs.⁹ Guo *et al.* reported energy transfer from the blue Eu^{2+} to red Mn^{2+} in $Sr_2Mg_3P_4O_{15}$, showing dual color emissions at 447 nm in blue and 610 nm in red, respectively.¹⁰ On noticing the previous reports on emission of Eu^{2+} in $Sr_2Mg_3P_4O_{15}$, we found that these reports exhibited solely a PL band of Eu^{2+} in blue. $Sr_2Mg_3P_4O_{15}$ has two kinds of Sr^{2+} sites, as described by Hong *et al.*¹¹ One strontium (Sr₁) ion, with an average Sr_1 –O bond length of 0.256 nm, occupies the larger cavities surrounded by O atoms with tenfold coordination. The other strontium (Sr₂) ion is six O atoms coordinated with average Sr₂–O bond length of 0.2265 nm. The two Sr²⁺ sites imply the possibility of two emission bands of Eu²⁺ in Sr₂Mg₃P₄O₁₅.

In this communication, we report, to our knowledge for the first time, the observation of a new strong emission band of Eu^{2+} located at 399 nm in $Sr_2Mg_3P_4O_{15}$. It is also significantly observed that the Eu^{2+} for the new band can transfer energy to Mn^{2+} more efficiently than that for the blue band in $Sr_2Mg_3P_4O_{15}$.

Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured using an F-4500 spectrometer. The crystalline structure was recorded by an X-ray diffractometer (XRD) (Rigaku D/M AX-2500 V). Fluorescence lifetimes were measured upon the excitation of the third harmonic (355 nm) of a YAG:Nd pulsed laser (Spectra-Physics, GCR130), and the signals were detected with a Tektronix digital oscilloscope (TDS 3052).

Fig. 1 shows the XRD patterns of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} and $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} . The predominant phase in the samples is the (c) $Sr_2Mg_3P_4O_{15}$ phase (JCPDS-No21-0964) with a very small amount of the secondary (d) $SrMgP_2O_7$ phase (JCPDS-No49-1027, \blacklozenge).

Fig. 2 shows the PL and PLE spectra of (a) $Sr_2Mg_3P_4O_{15}:5\%$ Eu^{2+} and (b) $Sr_2Mg_3P_4O_{15}:5\%$ Eu^{2+} 30% Mn²⁺. For clarifying the ineffective role of the secondary SrMgP₂O₇ phase in luminescence properties of the primary $Sr_2Mg_3P_4O_{15}$ phase, the spectra of (c) $SrMgP_2O_7:5\%$ Eu^{2+} , 30% Mn²⁺ are also presented in Fig. 2. It is observed that the PL spectrum of $Sr_2Mg_3P_4O_{15}$:5% Eu²⁺ exhibits not only the well known blue band located at 448 nm as previously reported,^{9,10} but also a new band located at 399 nm in violet that has never been demonstrated previously. Here, we label the violet band as $Eu^{2+}(I)$ and the blue one as $Eu^{2+}(II)$. The violet and blue bands also show different PLE spectrum. The PLE band for the violet emission terminates at around 375 nm and that for the blue one terminates at around 405 nm. This partially gives a reason why the violet band was not detected in Ngee et al.9 and Guo et al.'s¹⁰ work because they used 395 nm and 380 nm, respectively, as an excitation wavelength that can only selectively excite $Eu^{2+}(II)$ to emit in blue. One question is if the violet band originates from Eu²⁺ in the secondary SrMgP₂O₇ phase. To answer this question, we prepared SrMgP₂O₇:5% Eu²⁺, 30% Mn²⁺ and

^a Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CAS), 3888 Eastern South Lake Road, Changchun 130033, China. E-mail: zhangjh@ciomp.ac.cn; Fax: +86 431 8670 8875; Table 96 421 96720 8975;

Tel: +86 431 8670 8875

^b Graduate School of CAS, Beijing 100039, China

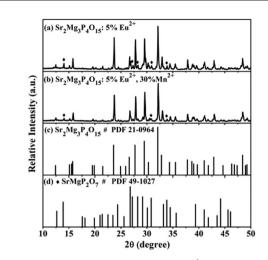
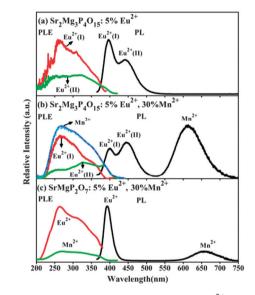



Fig. 1 XRD patterns of (a) $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , (b) $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} , standard (c) $Sr_2Mg_3P_4O_{15}$ phase and (d) $SrMgP_2O_7$ phase.

Fig. 2 PL and PLE spectra for (a) $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} . $\lambda_{ex} = 355$ nm, $\lambda_{em} = 399$, 448 nm. (b) $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} . $\lambda_{ex} = 355$ nm, $\lambda_{em} = 399$, 448 and 610 nm. (c) $SrMgP_2O_7$:5% Eu^{2+} , 30% Mn^{2+} . $\lambda_{ex} = 355$ nm, $\lambda_{em} = 392$, 655 nm.

present its spectra in Fig. 2(c) for comparing with Fig. 2(a) and (b). $Sr_2Mg_3P_4O_{15}{:}5\%~Eu^{2+},~30\%~Mn^{2+}$ exhibits a typical red PL band peaking at 610 nm, originating from ${}^4T_1{}^{-6}A_1$ transition of Mn^{2+} in $Sr_2Mg_3P_4O_{15}$ as previously reported. 10

From Fig. 2(b) one can see that the shape of the PLE band for Mn^{2+} is neither identical to that for individual $Eu^{2+}(I)$ nor $Eu^{2+}(II)$, but consistent with the linear combination of $Eu^{2+}(I)$ and $Eu^{2+}(II)$ (dotted line). This result indicates that both $Eu^{2+}(I)$ and $Eu^{2+}(II)$ are able to effectively transfer energy to Mn^{2+} . In general, it is considered that effective non-radiative energy transfer among ions cannot occur between two different crystal phases because of the long distance. It is therefore evidenced that $Eu^{2+}(I)$, $Eu^{2+}(II)$ and Mn^{2+} are located within the same $Sr_2Mg_3P_4O_{15}$ phase. As can be seen in the PL spectrum of $SrMgP_2O_7:5\% Eu^{2+}$, $30\% Mn^{2+}$, there is a violet band of Eu^{2+} peaking at 392 nm different from the one at 399 nm for $Eu^{2+}(1)$ in $Sr_2Mg_3P_4O_{15}$, while, the red emission band of Mn^{2+} in $SrMgP_2O_7$ peaks at 655 nm quite different from the one at 610 nm for Mn^{2+} in $Sr_2Mg_3P_4O_{15}$. The evidenced Mn^{2+} emission in $SrMgP_2O_7$ also results from energy transfer from Eu^{2+} because their PLE bands are consistent with each other very well. As a result, the spectra in Fig. 2(b) reflect the nature of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} without influence of the secondary $SrMgP_2O_7$ phase. According to Hong *et al.*'s work,¹¹ there exist Sr_1 and Sr_2 sites in $Sr_2Mg_3P_4O_{15}$ with ten and six oxygens coordinated, respectively. As a result, we attribute the violet and blue band to Eu^{2+} on the Sr_1 site and Sr_2 site, respectively, because Eu^{2+} with a higher coordination number generally emits at higher energy than that with a lower coordination number as described by Van Uitert.¹²

In view of occurrence of energy transfer from both $Eu^{2+}(I)$ and $Eu^{2+}(II)$ to Mn^{2+} , the PL spectrum (Fig. 2b) of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} in fact is the combination of the $Eu^{2+}(I)/Mn^{2+}$ individual spectrum (S_1) and the $Eu^{2+}(II)/Mn^{2+}$ individual spectrum (S_2), which in principle is independent of excitation wavelengths because of fixed Mn^{2+} concentration. Based on the different PLE spectra of $Eu^{2+}(I)$ and $Eu^{2+}(II)$, the distribution of PL spectra varies with excitation wavelengths. Fig. 3 shows the PL spectra of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} upon excitation at (a) 400 nm, (b) 355 nm and (c) 266 nm.

For excitation at 400 nm, only $\text{Eu}^{2^+}(I)$ is selectively excited, resulting in the $\text{Eu}^{2^+}(I)/\text{Mn}^{2^+}$ individual spectrum (S₂). The $\text{Eu}^{2^+}(I)/\text{Mn}^{2^+}$ individual spectrum (S₁) can be obtained by subtracting S₂ from the spectrum for 355 nm excitation (Fig. 3b). One can clearly find that S₁ shows a larger area intensity ratio of Mn^{2^+} to Eu^{2^+} than S₂, implying more effective energy transfer from $\text{Eu}^{2^+}(I)$ to Mn^{2^+} . Using S₁ and S₂ as basis spectra, the PL spectrum for 266 nm excitation is well reconstructed, as shown in Fig. 3(c). It should be noted that in spectral simulation, the emission bands of $\text{Eu}^{2^+}(I)$, $\text{Eu}^{2^+}(I)$ and Mn^{2^+} are fitted very well with Gaussian functions in wavenumber.

On comparing the PL spectra of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} and $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} , it can be seen that the PL intensity ratio of $Eu^{2+}(1)$ to $Eu^{2+}(1)$ becomes lower in $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} . This further reflects a more effective $Eu^{2+}(1)$ –Mn²⁺ energy transfer. To know the energy

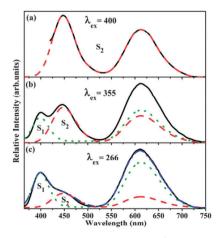


Fig. 3 PL spectra of $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} upon excitation at (a) 400 nm, (b) 355 nm and (c) 266 nm.

transfer efficiency, the fluorescence decays of (a) $Eu^{2+}(I)$ and (b) $Eu^{2+}(II)$ in $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} and $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} are measured and plotted in Fig. 4.

It is observed that either $Eu^{2+}(I)$ or $Eu^{2+}(II)$ fluorescence displays a single exponential decay in the absence of Mn^{2+} . As 30% Mn²⁺ is doped, the decays become faster and nonexponential, reflecting the characteristics of donors due to energy transfer. For Eu²⁺(I), the lifetime (τ_{10}) of 490 ns in the absence of Mn^{2+} is shortened to 147 ns (τ_1) in the presence of 30% Mn^{2+} . For $Eu^{2+}(II)$, the lifetime (τ_{20}) of 700 ns is shortened to 430 ns (τ_2). The lifetime of Mn²⁺ fluorescence is 17 ms. The values of all lifetimes are obtained by integrating the decay curves with normalized initial intensities. The energy transfer efficiency (η_1) for Eu²⁺(I) can be calculated by $\eta_1 = 1 - \tau_1/\tau_{10}$. Accordingly, $\eta_2 = 1 - \tau_2/\tau_{20}$ for Eu²⁺(II). For Mn^{2+} concentration of 30%, the calculated transfer efficiency $\eta_1 = 70\%$ for Eu²⁺(I) and $\eta_2 = 39\%$ for Eu²⁺(II), showing that $Eu^{2+}(I)$ transfers more efficiently than $Eu^{2+}(II)$. This is interpreted by larger spectral overlap between $Eu^{2+}(I)$ emission and Mn^{2+} excitation within its $3d^5$ configuration than that between $Eu^{2+}(II)$ and Mn^{2+} , as shown in Fig. 5.

From the PL spectra shown in Fig. 3, for 355 nm excitation, 55% of Mn^{2+} emission comes from $Eu^{2+}(I)$ transfer, 45% from $Eu^{2+}(I)$. For 266 nm excitation, 79% of Mn^{2+} emission comes from $Eu^{2+}(I)$ transfer, 21% from $Eu^{2+}(I)$. Denoting the area intensity of the $Eu^{2+}(I)$ band and the $Eu^{2+}(I)$ band by I_1 and I_2 , respectively, and that of Mn^{2+} band from $Eu^{2+}(I)$ transfer and $Eu^{2+}(I)$ transfer by M_1 and M_2 , respectively, we have

$$M_1/M_2 = \eta_1 I_1 (1 - \eta_2) / \eta_2 I_2 (1 - \eta_1)$$
(1)

Using $\eta_1 = 0.7$ and $\eta_2 = 0.39$, eqn (1) gives $M_1/M_2 = 3.6(I_1/I_2)$. Using the values of I_1/I_2 obtained from PL spectra, we can calculate the values of $M_1/(M_1 + M_2)$. The calculated results show that the percentage of Mn^{2+} emission fed by $Eu^{2+}(I)$ is 60% for 355 nm excitation and 83% for 266 nm excitation that agreed well with the values of 55% and 79% obtained directly

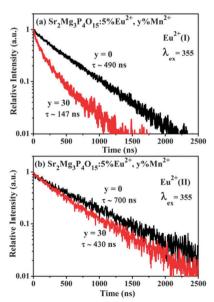


Fig. 4 Fluorescence decays of (a) $Eu^{2+}(I)$ and (b) $Eu^{2+}(I)$ in $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} and $Sr_2Mg_3P_4O_{15}$:5% Eu^{2+} , 30% Mn^{2+} .

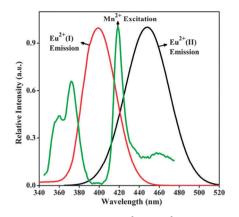


Fig. 5 Normalized PL spectra for $Eu^{2+}(I)$, $Eu^{2+}(I)$ and PLE spectrum for Mn^{2+} obtained in Eu^{2+} and Mn^{2+} singly doped $Sr_2Mg_3P_4O_{15}$.

from PL spectra. Using the values of transfer efficiency, it is also possible to estimate the reduction of the intensity ratio I_1/I_2 in Sr₂Mg₃P₄O₁₅:5% Eu²⁺, 30% Mn²⁺ in comparison with that in Sr₂Mg₃P₄O₁₅:5% Eu²⁺. From the PL spectra obtained upon 355 nm excitation, the ratio I_1/I_2 in Sr₂Mg₃P₄O₁₅:5% Eu²⁺, 30% Mn²⁺ is as 52% as that in Sr₂Mg₃P₄O₁₅:5% Eu²⁺. The transfer efficiency yields the ratio to be 0.5 by $(1 - \eta_1)/(1 - \eta_2)$, which is in good agreement with the PL data.

In summary, Eu^{2+} singly and Eu^{2+} , Mn^{2+} co-doped $Sr_2Mg_3P_4O_{15}$ exhibit not only the well known blue band of Eu^{2+} peaking at 448 nm but also a new emission band peaking at 399 nm in violet, attributed to Eu^{2+} on the six- and tencoordinated Sr^{2+} sites in $Sr_2Mg_3P_4O_{15}$, respectively. The Eu^{2+} band in violet transfers energy to Mn^{2+} more efficiently than that in blue. For Mn^{2+} fractional concentration of 0.3, the transfer efficiency is 70% for the violet $Eu^{2+}(1)$, but only 39% for the blue $Eu^{2+}(1)$. The luminescence spectral distributions for various excitation wavelengths are well fitted by the values of energy transfer efficiencies. The new Eu^{2+} band could enable Mn^{2+} and Eu^{2+} co-doped $Sr_2Mg_3P_4O_{15}$ to be a promising phosphor for enriching the red component of white LEDs.

This work is financially supported by the National Nature Science Foundation of China (10834006, 51172226, 10904141, 10904140), the MOST of China (2010AA03A404), and the Scientific project of Jilin province (20090134, 20090524).

Notes and references

- 1 S. Nakamura and G. Fasol, Proc. SPIE–Int. Soc. Opt. Eng., 1997, 3002, 26.
- 2 J. S. Kim, P. E. Jeon, J. C. Choi and H. L. Park, *Appl. Phys. Lett.*, 2004, 84, 15.
- 3 Z.-y. Mao, D.-j. Wang, Q.-f. Lu, W.-h. Yu and Z.-h. Yuan, Chem. Commun., 2009, 346–348.
- 4 Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong and Q. Su, J. Mater. Chem., 2006, 179, 2356–2360.
- 5 Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar and R. S. Liu, *Appl. Phys. Lett.*, 2007, **90**, 151108.
- S. Ye and Z. S. Liu, Mater. Res. Bull., 2008, 43, 1057.
- 7 Z. D. Hao, J. H. Zhang, X. Zhang, X. Y. Sun, Y. S. Luo and S. Z. Lu, *Appl. Phys. Lett.*, 2007, **90**, 2611.
- 8 M. V. Hoffman, J. Electrochem. Soc., 1968, 115, 560-563.
- 9 H. L. Ngee, et al., Phys. Procedia, 2009, 2, 171-183.
- 10 C. F. Guo, X. Ding, L. Luan and Y. Xu, Sens. Actuators, B, 2010, 143, 712–715.
- 11 J. H. Hong, S. Wan Song and S. Tae Hong, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2011, 67, i1–i3.
- 12 L. G. Van Uitert, J. Lumin., 1984, 29, 1-9.