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Abstract. A function is constructed to approximate the fundamental mode
field precisely in photonic crystal fibers (PCFs) using least square error
criteria. Through the unconstrained nonlinear programming method, the
optimum parameters of the constructed function are derived, and the opti-
mum constructed function is found. For photonic crystal fibers, using such
an optimum constructed function, small errors are brought out when
approximating their fundamental mode fields regardless of d∕Λ values.
Furthermore, the constructed function is not only suitable for index-guiding
PCFs, but also for bandgap PCFs with hollow core to some extent. Based
on this constructed function, an analytic expression for the far field of the
approximated fundamental mode field is deduced. Numerical results
demonstrate that the analytic expression brings out small errors compared
with the actual far field. © 2012 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.OE.51.6.065003]
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1 Introduction
Photonic crystal fibers (PCFs) have a silica core in their
center and air holes in their cladding. Light in such PCFs
is guided by total internal reflection caused by the effective
index difference between the core and the cladding, so the
light can be trapped in the core.1 Because the effective refrac-
tive index of the cladding is affected by the holes diameter
d and the hole-to-hole spacing Λ, the characters of such
PCFs can be varied by changing d and Λ.2,3 For example, the
fundamental mode field distribution is varied by changing d
and Λ.

For standard step-index fibers (SIFs) and PCFs, the ana-
lytic expression of the fundamental mode field is important
in estimating the splice loss, free space to fiber coupling
efficiency, and reflection.4 The mode field of SIFs can be
approximated by a Gaussian function precisely. Based on
such an analytic expression, the free space to fiber coupling
efficiency has been studied extensively.5–11 Recently, PCFs
have been widely used in stellar interferometers. But due
to the difficulty in obtaining the analytic expression of PCF’s
fundamental mode field, the numerical method had been
utilized to study the free space to PCF coupling effi-
ciency.12–15 Using the Gaussian function merely to approx-
imate the PCF’s fundamental mode field may not always be
valid.16–18 Furthermore, Hirooka et al. have reported that

approximating the fundamental mode fields of PCFs with
small d∕Λ values by Gaussian function brought out large
errors.4 Therefore, they proposed that the Gaussian function
be replaced by hyperbolic-secant (Sech) function for PCFs
with small d∕Λ values, but for PCFs with large d∕Λ values,
the Gaussian function should still be used. An analytical
model for the mode of index-guided microstructure fibers
was previously proposed by Sharma and Chauhan.19 A var-
iational method was utilized to obtain the parameters of the
analytical model. Furthermore, the propagation constant was
also obtained, thus, the modal effective index and the disper-
sion parameters were calculated to verify the validity of the
analytical model. The variational approach was also utilized
by Ghosh et al. to determine the modal effective indices and
dispersion of microstructure fibers.20 A simple Gaussian
function and modified Bessel function were considered for
the core and cladding, respectively.

To obtain a precise analytic expression of the fundamental
mode field of PCF regardless of d∕Λ value, this paper pro-
poses a constructed function that, no matter what the value of
d∕Λ, generates little error when approximating the funda-
mental mode field of PCF. Furthermore, this constructed
function is not only suitable for the index-guiding PCFs,
but also for bandgap PCFs with hollow core to some extent.
In addition, because of the circular symmetry of the con-
structed function, an analytical expression for the far field
of the approximated fundamental mode field is easily
obtained.0091-3286/2012/$25.00 © 2012 SPIE
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2 Characters of the Fundamental Mode Fields
in PCFs

The finite difference time domain (FDTD) method21 is uti-
lized to calculate the mode field of the HE11 mode of PCF.
For different d∕Λ values, the mode fields are shown in Fig. 1.
The parameters used in the computation are wavelength
λ ¼ 1.55 μm, hole-to-hole spacing Λ ¼ 2.3 μm, hole dia-
meter d ¼ 0.46 μm [Fig. 1(a)], 0.69 μm [Fig. 1(b)],
0.92 μm [Fig. 1(c)], 1.15 μm [Fig. 1(d)], 1.38 μm [Fig. 1(e)],
1.61 μm [Fig. 1(f)].

From Fig. 1(a), 1(b), and 1(c), it is seen that for small d∕Λ
values the mode fields distribute widely, and much of the
field energy distributes around the air-holes. Hence, the
mode fields have many dips. Figure 1(d), 1(e), and 1(f)
shows that for large d∕Λ values most of the mode field
energy is trapped in the core, and the mode fields have
few dips. In short, the distribution of the mode fields with
small d∕Λ values is apparently different from that of mode
fields with large d∕Λ values. To approximate the mode
field better, the above characters should be considered
necessarily.

3 Theoretical Basis
In our pervious paper,22 we defined the magnitude response
of one stage Butterworth filter as

jHðjωÞj ¼ 1

1þ γðω∕ωcÞ2
; (1)

whereωc was the cutoff frequency of the ideal Gaussian filter
and γ was an adjustable coefficient. According to Wells,23 an
ideal Gaussian filter can be approximated by cascading
uniform filters. Consequently, in our previous paper,22 we
proposed to approximate the Gauss filter by cascading the
Butterworth filters in Eq. (1). Thus, the relationship between
the Gauss filter and the Butterworth filter can be given by
Ref. 22

jGðjωÞj ¼ expð−a2ω2Þ ¼ lim
M→∞

�
1

1þ γðω∕ωcÞ2
�
M
; (2)

where M is the stage number of cascading Butterworth
filters, and M is a positive integer.

For the two dimensional Gauss function, Eq. (2) can be
written as

gðx;yÞ¼ exp

�
−
x2þy2

ω2

�
¼ lim

M→∞

�
1

1þξ · ðx2þy2Þ
�
M
; (3)

where M is relaxed to M ∈ Rþ, and Rþ means positive real
number. According to Eq. (3), the function fðx; yÞ ¼
½1þ ξ · ðx2 þ y2Þ�−M can be utilized to approximate the
two dimensional Gauss function. Adjusting the parameters
ξ and M, the error between the Gauss function and
fðx; yÞ varies and the shape of fðx; yÞ can be changed.
Despite of the complicated fundamental mode field profile
of PCFs with different structures, the function fðx; yÞ
with adjusting parameters ξ and M can be utilized to
approximate the fundamental mode fields of the PCFs.

4 Constructing an Approximation Function
Based on the above theoretical basis, a function is con-
structed in the form of

fðx; yÞ ¼
�

1

1þ ξðx2 þ y2Þ
�
M
; (4)

where ξ, M ∈ Rn and ξ ∈ ð0;þ∞Þ, M ∈ ð0;þ∞Þ. In the
intervals of ξ ∈ ð0;þ∞Þ and M ∈ ð0;þ∞Þ, fðx; yÞ pos-
sesses continuous first and second partial derivatives with
respect to ξ and M.

The actual mode field of PCF is assumed to be ϕðx; yÞ.
The least square error between fðx; yÞ and ϕðx; yÞ can be
defined as

Iðξ;MÞ¼
Z þ∞

−∞

Z þ∞

−∞
½ϕðx; yÞ − fðx; yÞ�2dxdy

¼
Z þ∞

−∞

Z þ∞

−∞
fϕðx; yÞ − ½1þ ξðx2 þ y2Þ�−Mg2dxdy:

(5)

Because fðx; yÞ possesses continuous first and second partial
derivatives with respect to ξ and M in the intervals of
ξ ∈ ð0;þ∞Þ and M ∈ ð0;þ∞Þ, hence, Iðξ;MÞ also pos-
sesses continuous first and second partial derivatives with
respect to ξ andM in the same intervals. The key to construct
fðx; yÞ is to derive ξopt and Mopt, which minimize Iðξ;MÞ.
Then, the optimum approximation function foptðx; yÞ can be
obtained.

In the intervals of ξ ∈ ð0;þ∞Þ and M ∈ ð0;þ∞Þ, deriv-
ing ξopt and Mopt which minimize Iðξ;MÞ can be considered
as constrained nonlinear programming, which can be repre-
sented in the form

min Iðξ;MÞ s:t:ξ > 0 M > 0; (6)

where Iðξ;MÞ is objective function, ξ > 0 and M > 0 are
constraints, s:t: means “subject to.” To resolve Eq. (6), let
us define a new objective function by combining all the con-
straints as the Lagrangian function,24 then the Lagrangian
function is

Lðξ;M; μ1; μ2Þ ¼ Iðξ;MÞ þ μ1 · ð−ξÞ þ μ2 · ð−MÞ; (7)
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Fig. 1 Field distribution of the fundamental mode field of PCF with
(a) d¼0.46μmðd∕Λ¼0.2Þ, (b) 0.69μmðd∕Λ¼0.3Þ (c) 0.92μm
ðd∕Λ¼0.4Þ (d) 1.15 μmðd∕Λ ¼ 0.5Þ (e) 1.38 μmðd∕Λ ¼ 0.6Þ (f)
1.61 μmðd∕Λ ¼ 0.7Þ.
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where ξ, M, μ1, and μ2 are decision variables. According to
the first-order Kuhn-Tucker necessary condition,24 at the
local optimum solutions, there is

∇Lðξopt;Mopt; μÃ1; μ
Ã
2Þ ¼ ∇Iðξopt;MoptÞ þ μÃ1 ×∇ð−ξÞ þ μÃ2

× ∇ð−MÞ ¼ 0; (8)

with μÃ1, μ
Ã
2 ≥ 0 and ∇ refers to gradient operator. After

executing Eq. (8), the necessary condition becomes8>><
>>:

∂L
∂ξ ¼ ∂Iðξ;MÞ

∂ξ

���
ðξopt;MoptÞ

− μÃ1 ¼ 0

∂L
∂M ¼ ∂Iðξ;MÞ

∂M

���
ðξopt;MoptÞ

− μÃ2 ¼ 0
: (9)

It has been verified that the intervals of optimum
solutions satisfying Eq. (9) are ξopt > 0 andMopt > 1∕2 (see
Appendix A). As a result, the form of the constrained
nonlinear programming is rewritten as

min Iðξ;MÞ s:t:ξ > 0 M > 1∕2: (10)

To resolve such constrained nonlinear programming in
Eq. (10), penalty methods or feasible direction methods25

can be used. But Eq. (10) can also be treated as uncon-
strained nonlinear programming. The verifications are
given successively.

It is assumed that the intervals of ξ andM in fðx; yÞ are ξ,
M ∈ Rn. Therefore, deriving ðξopt;MoptÞ which minimizing
Iðξ;MÞ can be represented as unconstrained nonlinear
programming in the form of

min Iðξ;MÞ s:t:ξ ∈ Rn M ∈ Rn: (11)

We assume that Iðξ;MÞ possesses continuous first
and second partial derivatives with respect to ξopt and Mopt.
According to the first-order necessary condition of
unconstrained nonlinear programming,24 at local optimum
solutions ðξopt;MoptÞ, ∇Iðξopt;MoptÞ ¼ 0 must be satisfied,
namely8>><
>>:

∂Iðξ;MÞ
∂ξ

���
ðξopt;MoptÞ

¼ 0

∂Iðξ;MÞ
∂M

���
ðξopt;MoptÞ

¼ 0
: (12)

It has been verified that the intervals of optimum solutions
satisfying Eq. (12) are also ξopt > 0 and Mopt > 1∕2 (see
Appendix B). Consequently, all the optimum solutions mini-
mizing Iðξ;MÞ lie in the intervals ξ ∈ ð0;þ∞Þ and
M ∈ ð1∕2;þ∞Þ. So treating Eq. (10) as unconstrained non-
linear programming cannot miss the optimum solutions. To
simplify the solving process, we treat Eq. (10) as uncon-
strained nonlinear programming.

For the unconstrained nonlinear programming above, the
second-order sufficiency conditions24

8<
:

J ¼ ∇Iðξopt;MoptÞ ¼ 0

H ¼ ∇2Iðξopt;MoptÞ; H is positive definite
(13)

must be satisfied. In Eq. (13), J is Jacobian vector and H is
Hessian matrix. After solving Eq. (13), strong local optimum
solutions ðξopt;MoptÞ can be obtained. But solving the above
sufficiency conditions has to use special numerical algo-
rithm. In this paper, we use the Davidon-Fletcher-Powell
method.25 Then, a group of strong local optimum solutions
satisfying Eq. (13) for PCFs with different d∕Λ values are
obtained in Table 1. Table 1 also shows the least square errors
between the actual mode fields and the approximated mode
fields by the optimum constructed function. Seen from
Table 1, all the optimum solutions lie in ξ ∈ ð0;þ∞Þ and
M ∈ ð1∕2;þ∞Þ. Thus, the optimum constructed functions
are obtained for PCFs with different d∕Λ values using
these optimum parameters.

5 Numerical Results of the Constructed Function

5.1 Results of the Total Internal Reflection PCFs
with Circular Air Holes

For comparison, the Gaussian (Gauss) function,4 hyper-
bolic-secant (Sech) function4 and the constructed function
proposed here are utilized to approximate the fundamental
mode fields of PCFs, which have different d∕Λ values.
The least square errors arisen from Gauss, Sech, and
constructed function, respectively are tabulated in Table 2.

By interpolating the data points in Table 2, the curves of
least square errors are obtained and plotted in Fig. 2.

Both Table 2 and Fig. 2 indicate that the constructed func-
tion causes smaller errors compared with Gauss and Sech
function when the mode fields of PCFs with small d∕Λ
values are approximated. For PCFs with large d∕Λ values,
the errors caused by the constructed function and Gaussian
function are very close and small; they are both smaller than
the errors caused by Sech function. The constructed function
can be observed to approximate PCFs better because it not
only brings out small errors, but also just uses one function
to approximate the mode fields of PCFs regardless of
d∕Λ values.

For further comparison, the profiles of the mode fields of
PCFs with d∕Λ ¼ 0.2 and d∕Λ ¼ 0.6 are approximated by
using the Gaussian function, Sech function, and constructed
function, respectively. Figure 3 shows d∕Λ ¼ 0.2 and Fig. 4
shows d∕Λ ¼ 0.6. In both Figs. 3 and 4, the x axis is the

Table 1 Optimum parameters and the approximation errors using
optimum constructed function.

d∕Λ ξ M Least square error

0.2 0.1729 1.1575 0.3432

0.3 0.1983 1.6927 0.1631

0.4 0.1030 4.0095 0.1048

0.5 0.0068 70 0.0534

0.6 0.0122 46 0.0397

0.7 0.0075 90 0.0281

0.8 0.0103 78 0.0217
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location along radial direction of the PCF, the y axis of (a) is
the linear amplitude. The y axis of (b) is the log amplitude
and (c) shows the approximation errors at different locations.
The legend of “Actual” means the fundamental mode field
profile obtained using FDTD method.

Seen in Fig. 3(a) and 3(b), much of the mode field energy
distributes in the interval of −5 to 5 μm. Figure 3(c)
shows that the mean approximation errors brought by the
constructed function are smaller than that brought by the
Gaussian and Sech function in this interval. In the intervals
of −10 to 5 μm and 5 to 10 μm, the mean approximation

errors caused by the constructed function are nearly the
same as those caused by the Sech function. Additionally,
they are both smaller than those caused by Gaussian
function. In Fig. 3(c), the integrals of the Gaussian, Sech, and
constructed function along x axis are 1.6451, 1.1843, and
0.8425, respectively. So for PCFs with small d∕Λ values,
the constructed function has the best approximation
performance.

In Fig. 4(a) and 4(b), nearly all of the mode field energy
distributes in the interval of −5 to 5 μm. Seen from (c), the
error curves of the Gaussian function and constructed
function nearly overlap in this interval. Hence, their mean
approximation errors are nearly equivalent. The errors
caused by Sech function are obviously larger than those

Table 2 Approximation errors caused by the Gauss, Sech, and
constructed function, respectively.

d∕Λ Gauss Sech Constructed function

0.2 1.8424 0.9070 0.3432

0.3 0.4813 0.2567 0.1631

0.4 0.1290 0.1337 0.1048

0.5 0.0528 0.1214 0.0534

0.6 0.0377 0.1146 0.0397

0.7 0.0270 0.0996 0.0281

0.8 0.0205 0.0846 0.0217
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Fig. 2 Least square errors caused by Gauss, Sech, and constructed
function. (a) Linear scale, (b) log scale. (λ ¼ 1.55 μm).
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Fig. 3 Comparison of the actual PCF’s field profile (black) with Gauss
(red), Sech (green), and constructed function (orange) profile for
d∕Λ ¼ 0.2. (a) Amplitude with linear scale. (b) Amplitude with log
scale. (c) Approximation errors along x axis. The mode field is plotted
along x axis.
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caused by Gaussian and constructed function. In Fig. 4(c),
the integrals of the Gaussian, Sech, and constructed function
along x axis are 0.2221, 0.5112, and 0.2309, respectively. So
for PCFs with large d∕Λ values, the constructed function and
Gaussian function exhibit almost the equivalent approxima-
tion performance. Both of their approximation performance
is better than that of Sech function.

To emphasize on the utility of our proposed function, the
propagation constants are calculated by the proposed func-
tion in combination with the variational method in Refs. 19
and 20 firstly. The scalar variational expression for propaga-
tion constant β is given19,20 by

β2 ¼ k20
R
∞
0 n2ðRÞjψ j2RdR − a−2

R
∞
0 jdψ∕dRj2RdRR

∞
0 jψ j2RdR ; (14)

where ψ is our proposed function here. Then, using β, the
modal effective index and dispersion are obtained. The
results have been compared with those obtained by a freely
available software, CUDOS microstructured optical fibre
(MOF) Utilities.26 The software is based on a multipole
method.27,28 The results are plotted in Fig. 5.

Figure 5(a) and 5(b) shows the comparison of neff values
obtained from the variational method using our proposed
function and multipole method for different f ¼ d∕Λ and
Λ, respectively. In fact, it is observed that the results obtained
by the proposed function agree well with those obtained
using the multipole method.

The dispersion coefficients calculated using the neff in
Fig. 5 are shown in Fig. 6. In Fig. 6(a), these curves
show that our proposed function predicts dispersion coeffi-
cients reasonably well at lower wavelengths and deviated
slightly at longer wavelengths for large f values. The
poor confinement of the fundamental mode in the core
results in such deviation at longer wavelengths.
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Fig. 4 Comparison of the actual PCF’s field profile (black) with Gauss
(red), Sech (green), and constructed function (orange) profile for
d∕Λ ¼ 0.6. (a) Amplitude with linear scale. (b) Amplitude with log
scale. (c) Approximation errors along x axis. The mode field is plotted
along x axis.
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d∕Λ and (b) constant f with varyingΛ for hexagonal lattice microstruc-
tured optical fibres (MOFs). The solid lines are obtained by our
proposed function in combination with the variational method. The cir-
culars are obtained by the Multipole method in CUDOS MOF Utilities.
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In Fig. 6(b), apart from the curve of Λ ¼ 2.0 um, other
curves obtained from our proposed function and Multipole
method match well at Λ ¼ 3.0 um to Λ ¼ 5.0 um through-
out the entire wavelength span of 0.5 to 2.0 μm. The mis-
match for Λ ¼ 2.0 um at longer wavelengths is also
because of the poor confinement of fundamental mode.

5.2 Results of the Total Internal Reflection PCFs
with Elliptical Air Holes

To further prove the performance of our proposed con-
structed function, we performed a modal approximation
of a three-ring elliptical air hole photonic crystal fiber.
The hexagonal PCF considered has three rings of air holes
in a triangular lattice arrangement with a pitch Λ ¼ 2.3 μm.
The same configurations of elliptical air holes as in Sharma
et al.29 are used. Hence, three configurations of elliptical air
holes are considered, denoted as Configurations I, II, and III.
Furthermore, we consider the effect of the rotation of
the ellipse axes, so the ellipse axes are rotated by 0 and
90 deg. We use “elliptical 0°” and “elliptical 90°” to represent
these two orientations, respectively. These elliptical
configurations are shown in Table 3. In Table 3, rmaj

means the major axis radius of the elliptical hole, rmin is

the minor axis radius. As in Ref. 29, the area of the hole
has been preserved, so that r2 ¼ rmaj · rmin. Accordingly,
the elliptical air hole with rmaj and rmin can be equivalent
to the circular air hole with radius r. Thus, d∕Λ ¼ 2r∕Λ
can be equivalent to the air-filling fraction of the PCF having
elliptical holes. Two cases of air-filling fraction are consid-
ered here. In the first case, there is r ¼ 0.345 μm, namely,
0.3452 ¼ rmaj · rmin, so d∕Λ ¼ 0.3. In the second case,
r ¼ 0.69 μm, so d∕Λ ¼ 0.6.

For the first case, the fundamental mode fields of PCFs
with different elliptical air holes are shown in Fig. 7.
Then the Gauss, Sech, and constructed function are utilized
to approximate all the fields. The errors for different config-
urations are tabulated in Table 4. It is observed that the con-
structed function performs better than the Gauss and Sech
function for such d∕Λ ¼ 0.3 case. And it is also seen that
the Sech function performs better than the Gauss function
here. Consequently, this trend agrees well with that in Table 2
and Fig. 2.

For the second case, the fundamental mode fields and the
approximation errors are shown in Fig. 8 and Table 5, respec-
tively. From Table 5, it is observed that for such d∕Λ ¼ 0.6
case the Gauss function has the best performance, the con-
structed function performs better than the Sech function, and
the performance of the constructed function is close to that of
the Gauss function. Hence, this trend also matches well with
that in Table 2 and Fig. 2.
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Fig. 6 Dispersion curves obtained by the proposed function in com-
bination with variational method and Multipole method in CUDOS
MOF Utilities. (a) constant Λ with varying f ¼ d∕Λ and (b) constant
f with varying Λ for hexagonal lattice MOFs. The solid lines are
obtained by our proposed function in combination with the variational
method. The circulars and plus signs are obtained by the Multipole
method in CUDOS MOF Utilities.

Table 3 Various configurations considered for elliptical air holes.

Configuration I Configuration II Configuration III

Elliptical 0 deg

majr
minr

Elliptical 90 deg
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Fig. 7 Fundamental mode fields of PCFs with different elliptical air
holes when r ¼ 0.345 μm. The orientation of (a)–(c) is 0 deg. The
orientation of (d)–(f) is 90 deg. (a) and (d): rmaj ¼ 0.5 μm,
rmin ¼ 0.2361 μm, (b) and (e): rmaj ¼ 0.45 μm, rmin ¼ 0.2645 μm,
(c) and (f): rmaj ¼ 0.6 μm, rmin ¼ 0.19638 μm.
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5.3 Results of the Bandgap PCFs with Hollow Core

To further clarify for which fiber structures the constructed
function is suitable, two examples featuring the hollow core
band gap photonic crystal fiber are simulated. The first
example is a hollow core fiber with a matrix index of
1.45 and three layers of holes in a hexagonal pattern. The
lattice spacing is Λ ¼ 5 μm, and the diameter of the holes
divided by the lattice spacing is 0.4. The central hole radius
is 5.55 μm. In the second example, the diameter of the holes
divided by the lattice spacing is 0.8, the other structure para-
meters are the same as those in the first example.

The fundamental mode fields of the two examples for dif-
ferent wavelengths are shown in Fig. 9. Figure 9(a) through
9(c) shows the fields of the first example. Figure 9(d) through
9(f) are the fields of the second example. For the first exam-
ple, it is observed that the field in Fig. 9(a) at λ ¼ 3.1 μm is
better confined in the core, and that Fig. 9(b) and 9(c) shows
low confinement, which leads to leakage of the mode. In the
second example, Fig. 9(e) at λ ¼ 2.9 μm shows relative high
confinement, while Fig. 9(d) and 9(f) has lower confinement.
In addition, the hollow core fiber in the first example has
lower confinement than that in the second example.
Hence, Fig. 9(a) through 9(c) has more leakage of the
mode than Fig. 9(d) through 9(f).

Each field in Fig. 9 is approximated by Gauss, Sech, and
the constructed function, respectively. The errors of the first

example are tabulated in Table 6. The second example’s
errors are tabulated in Table 7. Both tables demonstrate
that the constructed function can approximate the field of
the hollow core fiber better than the Gauss and Sech func-
tion. However, because there is more leakage of the mode in
the first example, the errors in Table 6 are larger than those in
Table 7. Consequently, we don’t suggest replacing the actual
fundamental mode field with these three functions when
large leakage of the mode occurs in the hollow core fiber.
But if the replacement is inevitable, our constructed function
is recommended. For the hollow core fiber with high field
confinement in the core, from Table 7, the constructed func-
tion still has better performance than the Gauss and Sech
function.

6 Analytic Expression of the Approximated
Far Field

In the polar coordinates, the constructed function has the
form of

fðρÞ ¼
�

1

1þ ξρ2

�
M
; (15)

where x ¼ ρ cos θ and y ¼ ρ sin θ. Equation (15) has circu-
lar symmetry30 and its Fourier transform can be represented
by

FðrÞ ¼ 2π

Z
∞

0

ρð1þ ξρ2Þ−MJ0ð2πrρÞdρ: (16)

If r ¼ 0, Eq. (16) becomes

Fð0Þ ¼ 2π

Z
∞

0

ρð1þ ξρ2Þ−Mdρ ¼ π

ξðM − 1Þ : (17)

If r > 0, Eq. (16) becomes

FðrÞ ¼ 2π

ξM

Z
∞

0

J0ð2πrρÞ · ρ
½ρ2 þ ð ffiffiffiffiffiffiffiffi

1∕ξ
p Þ2�M dρ: (18)

Recalling the integral formula31

Table 4 Approximation errors for various configurations and orientations when r ¼ 0.345μm.

Orientation Function
Configuration I rmaj ¼ 0.6 μm,

rmin ¼ 0.19638 μm
Configuration II rmaj ¼ 0.5 μm,

rmin ¼ 0.2361 μm
Configuration III rmaj ¼ 0.45 μm,

rmin ¼ 0.2645 μm

0 deg Gauss 0.6154 0.6631 0.6306

Sech 0.2827 0.3050 0.2948

Constructed 0.1607 0.1599 0.1665

90 deg Gauss 0.4473 0.4831 0.5433

Sech 0.2148 0.2259 0.2564

Constructed 0.1436 0.1433 0.1533
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Fig. 8 Fundamental mode fields of PCFs with different elliptical air
holes when r ¼ 0.69 μm. The orientation of (a)–(c) is 0 deg. The orien-
tation of (d)–(f) is 90 deg. (a) and (d): rmaj ¼ 0.9523 μm,
rmin ¼ 0.5 μm, (b) and (e): rmaj ¼ 0.794 μm, rmin ¼ 0.6 μm, (c) and
(f): rmaj ¼ 1.0458 μm, rmin ¼ 0.45 μm.
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Z
∞

0

JνðbxÞ · xνþ1

ðx2 þ a2Þμþ1
dx ¼ aν−μ · bμ

2μ · Γðμþ 1Þ · Kν−μðabÞ

½−1 < Reν < Reð2μþ 3∕2Þ; a > 0; b > 0�;
(19)

where Kν−μð·Þ is the second kind modified Bessel function,
Γð·Þ is Gamma function, then, Eq. (18) changes to

FðrÞ ¼ 2πMrM−1

ð ffiffiffi
ξ

p ÞMþ1ΓðMÞK−ðM−1Þ

�
2πr

ffiffiffi
1

ξ

s �
: (20)

The far field of the fundamental mode field is determined
by Fraunhofer diffraction, and the Fraunhofer diffraction
equation30 is

Uðx2;y2Þ¼
expðikΔzÞexp½ikðx22þy22Þ∕ð2ΔzÞ�

iλΔz
FfUðx1;y1Þg;

(21)

where Ff•g denotes Fourier transform. Substituting Eq. (17)
and (20) into Eq. (21), the analytic expression of the approxi-
mated far field in the polar coordinates can be obtained.

UðrÞ ¼

8>>><
>>>:

expðikΔzÞ exp½ikr2∕ð2ΔzÞ�
iλΔz

·
π

ξðM − 1Þ ; r ¼ 0

expðikΔzÞ exp½ikr2∕ð2ΔzÞ�
iλΔz

·
2πMrM−1

ð ffiffiffi
ξ

p ÞMþ1ΓðMÞK−ðM−1Þ

�
2πr

ffiffiffi
1

ξ

s �
; r > 0

: (22)

7 Numerical Results of the Analytic Expression
For the actual mode fields of PCFs with different d∕Λ values
and the corresponding approximated fields by the con-
structed function, we have computed the far fields of
these two kinds of fields propagating 1550 μm in free

space. The far fields of the approximated fields are computed
by Eq. (22). The far field patterns of d∕Λ ¼ 0.2 and d∕Λ ¼
0.6 are shown in Fig. 10. We can see that the far field patterns
of the approximated fields do not have side-lobes. The far
field patterns of the actual mode fields have side-lobes
with little energy around the center-lobe. However, the
energy of side-lobes is so small that the least square errors
between the far fields of the approximated field and the far
fields of the actual mode fields are very small. The curve of
least square errors between these two kinds of far fields is

Table 5 Approximation errors for various configurations and orientations when r ¼ 0.69 μm.

Orientation Function
Configuration I rmaj ¼ 0.794 μm,

rmin ¼ 0.6 μm
Configuration II rmaj ¼ 0.9523 μm,

rmin ¼ 0.5 μm
Configuration III rmaj ¼ 1.0458 μm,

rmin ¼ 0.45 μm

0 deg Gauss 0.0614 0.0779 0.0965

Sech 0.1359 0.1537 0.1682

Constructed 0.0628 0.0787 0.0968

90 deg Gauss 0.0496 0.0489 0.0495

Sech 0.1159 0.1045 0.0975

Constructed 0.0514 0.0506 0.0511
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Fig. 9 Fundamental mode fields of the two examples. (a) λ ¼ 3.1 μm,
(b) λ ¼ 3.3 μm, (c) λ ¼ 3.4 μm, (d) λ ¼ 2.8 μm, (e) λ ¼ 2.9 μm,
(f) λ ¼ 3.0 μm. The first example: (a)–(c); the second example: (d)–(f).

Table 6 Approximation errors of different functions at different wave-
lengths for the first example.

λðumÞ Gauss Sech
Constructed
function ðξ; MÞ

3.1 10.4503 8.98210 4.7848 (0.0890,1.0)

3.3 16.5091 14.0693 6.9937 (0.0772,1.0)

3.4 35.3264 25.5393 12.9633 (0.0370,1.0)

Optical Engineering 065003-8 June 2012/Vol. 51(6)

Zhang et al.: Study of a constructed function for approximating mode field : : :

D o w n l o a d e d  F r o m :  h t t p : / / o p t i c a l e n g i n e e r i n g . s p i e d i g i t a l l i b r a r y . o r g /  o n  0 9 / 0 5 / 2 0 1 2  T e r m s  o f  U s e :  h t t p : / / s p i e d l . o r g / t e r m s



plotted in Fig. 11. From Fig. 11, we can see that the errors are
small and analogy with that in Fig. 2.

8 Conclusion
In this paper, we constructed a function to approximate the
fundamental mode fields of PCFs with different d∕Λ values.
For PCFs with small d∕Λ values, the constructed function
approximates the fundamental mode fields in the core pre-
cisely, and approximates the fields distributing around
the air holes with relative small errors. As a result, the

approximation errors brought by the constructed function
are smaller than those brought by the Gaussian and Sech
function. For PCFs with large d∕Λ values, the constructed
function approximates the fundamental mode fields with
high accuracy, and the approximation errors brought by the
constructed function are very close to those brought by the
Gaussian function. The constructed function is suitable for
PCFs with different structures, which has been proved by
the examples of elliptical air holes PCFs and hollow core
bandgap PCFs used in the paper. Based on the constructed
function, an analytic expression for the far field of the
approximated fundamental field is derived. The least square
error between the analytic expression and the actual far field
is very small. Hence, the analytic expression can represent
the actual far field accurately.
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Appendix A: Explanations for the Selection of
the Intervals of the Optimum Solution of Eq. (9)
In the intervals of ξ ∈ ð0;þ∞Þ, M ∈ ð0;þ∞Þ, according to
the fist-order Kuhn-Tucker necessary condition,24 there are

∂L
∂ξ

¼ ∂Iðξ;MÞ
∂ξ

����
ðξopt;MoptÞ

− μÃ1 ¼ 0; (23)

∂L
∂M

¼ ∂Iðξ;MÞ
∂M

����
ðξopt;MoptÞ

− μÃ2 ¼ 0: (24)

In the Cartesian coordinates, Eq. (23) is

∂L
∂ξ

¼ 2Mopt

Z þ∞

−∞

Z þ∞

−∞
ϕðx; yÞ½1þ ξoptðx2 þ y2Þ�−Mopt−1

× ðx2 þ y2Þdxdy − 2Mopt

Z þ∞

−∞

Z þ∞

−∞

× ½1þ ξoptðx2 þ y2Þ�−2Mopt−1

× ðx2 þ y2Þdxdy − μÃ1 ¼ 0: (25)

For the second integral in Eq. (25), we replace x, y with
ρ cos θ and ρ sin θ, then

Z þ∞

−∞

Z þ∞

−∞
½1þ ξoptðx2 þ y2Þ�−2Mopt−1ðx2 þ y2Þdxdy

¼ π

Z þ∞

0

ð1þ ξoptρ
2Þ−2Mopt−1ρ2dρ2: (26)

Substituting ρ2 with t, Eq. (26) changes to
π∫ þ∞

0 ð1þ ξopttÞ−2Mopt−1tdt, then integrating this term yields

Table 7 Approximation errors of different functions at different wave-
lengths for the second example.

λðumÞ Gauss Sech
Constructed
function ðξ; MÞ

2.8 3.5723 2.3897 1.7214 (0.0625,1.4)

2.9 3.1304 2.1810 1.3755 (0.0865,1.3)

3.0 7.8107 5.5788 2.6472 (0.1111,1.0)
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Fig. 10 Far fields of the actual PCFs’ fields (above) and far fields of
approximated fields by constructed function (below). (a) d∕Λ ¼ 0.2
(b) d∕Λ ¼ 0.6. (λ ¼ 1.55 μm).
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Fig. 11 Least square errors between far fields of the actual PCFs’
fields and far fields of approximated fields by constructed function.

Optical Engineering 065003-9 June 2012/Vol. 51(6)

Zhang et al.: Study of a constructed function for approximating mode field : : :

D o w n l o a d e d  F r o m :  h t t p : / / o p t i c a l e n g i n e e r i n g . s p i e d i g i t a l l i b r a r y . o r g /  o n  0 9 / 0 5 / 2 0 1 2  T e r m s  o f  U s e :  h t t p : / / s p i e d l . o r g / t e r m s



π

Z þ∞

0

ð1þ ξopttÞ−2Mopt−1tdt

¼ −
π

2ξoptMopt

�
lim

t→þ∞
tð1þ ξopttÞ−2Mopt

þ 1

ξoptð2Mopt − 1Þ ½ limt→þ∞
ð1þ ξopttÞ−2Moptþ1 − 1�

�
:

(27)

For Eq. (27), only if Mopt ≥ 1∕2, the limits exist, thus,
Eq. (23) makes sense.

In the Cartesian coordinates, Eq. (24) is

∂L
∂M

¼ 2

Z þ∞

−∞

Z þ∞

−∞
ϕðx; yÞ½1þ ξoptðx2 þ y2Þ�−Mopt

× ln½1þ ξoptðx2 þ y2Þ�dxdy

− 2

Z þ∞

−∞

Z þ∞

−∞
½1þ ξoptðx2 þ y2Þ�−2Mopt

× ln½1þ ξoptðx2 þ y2Þ�dxdy − μÃ2 ¼ 0: (28)

For the second integral in Eq. (28), we replace x, y with
ρ cos θ and ρ sin θ, thenZ þ∞

−∞

Z þ∞

−∞
½1þξoptðx2þy2Þ�−2Mopt ln½1þξoptðx2þy2Þ�dxdy

¼π

Z þ∞

0

ð1þξoptρ
2Þ−2Mopt lnð1þξoptρ

2Þdρ2: (29)

If ξopt > 0, Eq. (29) becomes

π

Z þ∞

0

ð1þ ξoptρ
2Þ−2Mopt lnð1þ ξoptρ

2Þdρ2

¼ π

ξopt

Z þ∞

1

ð1þ ξoptρ
2Þ−2Mopt lnð1þ ξoptρ

2Þdð1þ ξoptρ
2Þ.

(30)

Let t ¼ 1þ ξoptρ
2, Eq. (30) changes to

π

ξopt

Z þ∞

1

ð1þ ξoptρ
2Þ−2Mopt lnð1þ ξoptρ

2Þdð1þ ξoptρ
2Þ

¼ π

ξopt

Z þ∞

1

t−2Mopt lnðtÞdt: ð31Þ

Integrating Eq. (31) yields

π

ξopt

Z þ∞

1

t−2Mopt lnðtÞdt

¼ π

ξoptð−2Mopt þ 1Þ
�

lim
t→þ∞

½t−2Moptþ1 lnðtÞ�

þ 1

2Mopt − 1
½ lim
t→þ∞

ðt−2Moptþ1Þ − 1�
�
: ð32Þ

For Eq. (32), only if Mopt > 1∕2, the limits exist, therefore,
Eq. (24) makes sense.

From the above discussion, only if ξopt > 0 and
Mopt > 1∕2, Eqs. (23) and (24) just make sense at the
same time. So the intervals are ξopt > 0 and Mopt > 1∕2.

Appendix B: Explanations for the Selection of
the Intervals of the Optimum Solution
of Eq. (12)
Forξ,M ∈ Rn, basedon theassumption that Iðξ;MÞpossesses
continuous first and second partial derivatives with respect to
ξopt andMopt, according to the first-order necessary condition
of unconstrained nonlinear programming,24 there are

∂Iðξ;MÞ
∂ξ

����
ðξopt;MoptÞ

¼ 0; (33)

∂Iðξ;MÞ
∂M

����
ðξopt;MoptÞ

¼ 0: (34)

In the Cartesian coordinates, Eq. (33) is

∂Iðξ;MÞ
∂ξ

����
ðξopt;MoptÞ

¼ 2Mopt

Z þ∞

−∞

Z þ∞

−∞
ϕðx; yÞ

× ½1þ ξoptðx2 þ y2Þ�−Mopt−1ðx2 þ y2Þdxdy

− 2Mopt

Z þ∞

−∞

Z þ∞

−∞
½1þ ξoptðx2 þ y2Þ�−2Mopt−1

× ðx2 þ y2Þdxdy ¼ 0: (35)

If ξopt ¼ 0, the second integral in Eq. (35) changes to
∫ þ∞
−∞∫ þ∞

−∞ ðx2 þ y2Þdxdy. This term is infinite, thus
Eq. (35) makes no sense, so ξopt ≠ 0. For ξopt ≠ 0, after inte-
grating the second integral in Eq. (35), the result is the same
as Eq. (27). So only ifMopt ≥ 1∕2, Eq. (35) makes sense and
Eq. (33) can just be satisfied.

In the Cartesian coordinates, Eq. (34) is

∂Iðξ;MÞ
∂M

����
ðξopt;MoptÞ

¼ 2

Z þ∞

−∞

Z þ∞

−∞
ϕðx; yÞ

× ½1þ ξoptðx2 þ y2Þ�−Mopt ln½1þ ξoptðx2 þ y2Þ�dxdy

− 2

Z þ∞

−∞

Z þ∞

−∞
½1þ ξoptðx2 þ y2Þ�−2Mopt

× ln½1þ ξoptðx2 þ y2Þ�dxdy ¼ 0:

(36)

According to the above discussion, ξopt ≠ 0. If ξopt < 0, for
the second integral in Eq. (36), we replace x, y with ρ cos θ
and ρ sin θ, thenZ þ∞

−∞

Z þ∞

−∞
½1þ ξoptðx2 þ y2Þ�−2Mopt

× ln½1þ ξoptðx2 þ y2Þ�dxdy ¼ π

Z þ∞

0

× ð1þ ξoptρ
2Þ−2Mopt lnð1þ ξoptρ

2Þdρ2: (37)

Let t ¼ 1þ ξoptρ
2, Eq. (37) becomes
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π

Z þ∞

0

ð1þ ξoptρ
2Þ−2Mopt lnð1þ ξoptρ

2Þdρ2

¼ π

ξopt

Z
1

0

t−2Mopt lnðtÞdt: (38)

Integrating Eq. (38) yields

π

ξopt

Z
1

0

t−2Mopt lnðtÞdt¼ π

ξoptð−2Moptþ1Þ

×
�
−lim

t→0
½t−2Moptþ1 lnðtÞ�− 1

2Mopt−1
½lim
t→0

ðt−2Moptþ1Þ−1�
�
:

(39)

For Eq. (39), only if Mopt < 1∕2, the limits exist, therefore,
Eq. (34) makes sense. If ξopt > 0, after integrating the second
integral in Eq. (14), the result is the same as Eq. (32), so only
ifMopt > 1∕2, Eq. (36) makes sense and Eq. (34) can just be
satisfied.

According to the above discussion, only if ξopt > 0 and
Mopt > 1∕2, Eqs. (33) and (34) just make sense at the
same time. So the intervals becomes ξopt > 0, Mopt > 1∕2.
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