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Ce3+ and Mn2+ co-doped Ca4Si2O7F2 phosphors have been synthesized by high temperature solid state re-
action and their luminescence properties are investigated. The effect of Ce3+ concentration on the emission
intensity of Ca4Si2O7F2: Ce3+ is studied, and the emission intensity reaches a maximum at 4% Ce3+. Energy
transfer from Ce3+ to Mn2+ is observed. The emission spectra of the phosphors show a blue broad band at
460 nm of Ce3+ and a yellow band at 580 nm of Mn2+, originate from the allowed 5d→4f transition of
the Ce3+ ion and the 4T1g(4G)→ 6A1g(6S) transition of the Mn2+ ion, respectively. Results indicate that the
varied emitted color from blue to yellow can be achieved by tuning the relative ratio of the Ce3+ to Mn2+

ions based on the principle of energy transfer. We have demonstrated that Ca4Si2O7F2: Ce
3+, Mn2+ phos-

phors can be a promising candidate for a color-tunable phosphor applied in a near-UV White light emitting
diodes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Since light-emitting diodes (LEDs) have brought a significant
revolution in the field of illumination for application like general
lighting sources and components of backlight for liquid-crystal dis-
plays (LCDs), they have an impact on research on luminescent ma-
terials (phosphors). Many of the phosphors presently used are
obtained by doping rare earth ions into host material. In particular,
Ce3+-activated phosphors have been subjected to considerable
number of researches because Ce3+ ion exhibits good performances
for its special optical properties of a broad band emission depending
on the hosts. For example, the commonly used are down converting
yellow emitting Y3Al5O12:Ce3+ phosphor and silicate garnet Sr3SiO5:
Ce3+ and Ca3Sc2Si3O12:Ce3+ phosphors [1–4]. Moreover, Ce3+ ion
can also act as an excellent sensitizer, transferring a part of its ener-
gy to activator ion such as Mn2+ [5–8]. As we have known, Mn2+

doped luminescent materials have wide-range emissions from 500
to 700 nm depending on the crystal field of the host materials. How-
ever, the Mn2+ d–d transitions are difficult to pump, because they
are forbidden by spin and parity for electric dipole radiation. Thus,
the Mn2+ emission can be realized efficiently by energy transfer
from Ce3+ to Mn2+, which plays an important role in development
of efficient phosphor materials.
7.
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In this work, we have demonstrated a new dual-tunable Ca4Si2O7-

F2: Ce3+, Mn2+ phosphor by energy transfer mechanism between
the luminescence centers Ce2+ and Mn2+, and the color can be
tuned from blue to yellow. We have also proven that a near-white
light can be achieved by increasing the dopant contents of Mn2+.
The Ca4Si2O7F2: Ce3+, Mn2+ phosphor exhibits great potential for
use in white UV-LED applications.

2. Experimental

The Ca4−x−ySi2O7F2 (CSF): xCe3+, yMn2+ phosphors were syn-
thesized by a high-temperature solid-state reaction. The constituent
oxides or carbonates CaCO3 (99.9%), SiO2 (99.9%), CaF2 (99.9%),
CeO2 (99.99%), and MnCO3 (99.99%) were employed as the rawmate-
rials, which were mixed homogeneously by an agate mortar for
30 min, placed in a crucible with a lid, and then sintered in a tubular
furnace at 1200 °C for 2 h in CO reducing atmosphere. Powder X-ray
diffraction (XRD) data was collected using Cu Kα radiation
(λ=1.54056 Å) on a Bruker D8 Advance diffractometer equipped
with a linear position-sensitive detector (PSD-50 m, M. Braun), oper-
ating at 40 kV and 40 mA with a step size of 0.02° (2θ). Crystal struc-
ture refinement employed the Rietveld method as implemented in
the General Structure Analysis System (GSAS) program [9]. The mea-
surements of photoluminescence (PL) and photoluminescence exci-
tation (PLE) spectra were performed by using a Hitachi F4500
spectrometer equipped with a 150 W xenon lamp under a working
voltage of 700 V.
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Fig. 1. Rietveld analysis patterns for X-ray powder diffraction data of CSF: Ce3+. The
cross marks represent the experimental intensities, and the red solid line is the calcu-
lated one. A difference (obsd–calcd) plot is shown beneath. Tick marks above the dif-
ference data indicate the reflection positions.

Fig. 3. The excitation and emission spectra of CSF: 0.04Ce3+(a), CSF: 0.1Mn2+ (b), CSF:
0.04Ce3+, 0.1Mn2+ and (c) phosphors.
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3. Results and discussion

Fig. 1 shows the experimental, calculated, and their difference re-
sults of the XRD refinement of CSF: 0.04Ce3+. The initial structural
model was constructed with crystallographic data previously
reported for Ca4Si2O7F2 (JCPDS 41–1474) [10]. All of the observed
XRD peaks are obtained with goodness of fit parameters
Rwp=8.34% and χ2=4.98. CSF crystallizes as a monoclinic structure
with a space group of P 1 21/c 1 and lattice constants of
a=7.5422 Å, b=10.5442 Å, c=10.9171 Å. Our XRD refinement indi-
cate that Ca2+ ions have four different coordination numbers (CNs)
as shown in Fig. 1 inset. Ca(1) is six coordinated surrounding by five
oxygen and one fluorine atoms; Ca(2) and Ca(3) are both seven coor-
dinated with six oxygen and one fluorine atoms, and four oxygen and
three fluorine atoms, respectively; Ca(4) is eight coordinated sur-
rounding by five oxygen and three fluorine atoms. The ionic radii of
Ca(1)(CN=6), Ca(2) and Ca(3) (both CN=7), Ca(4)(CN=8) are ap-
proximately 1.00, 1.06, and 1.12 Å, respectively. In this study, it is rea-
sonable to propose that Ce3+ and Mn2+ are expected to randomly
occupy the Ca2+ sites in the host structure.

Fig. 2 shows the PL spectra of CSF: xCe3+ with varying Ce3+ con-
tents (x=0.005, 0.01, 0.02, 0.04, 0.06, and 0.08) under an excitation
wavelength of 330 nm. The inset shows that the Ce3+ concentration
Fig. 2. The PL spectra of CSF: xCe3+ with varying Ce3+ contents (x=0.005, 0.01, 0.02,
0.04, 0.06, and 0.08) under an excitation wavelength of 330 nm.
dependence of the PL intensity of CSF: Ce3+ demonstrated an opti-
mal doping content of Ce3+ of 4 mol% in CSF. Beyond the content,
the PL intensity was found to decrease dramatically due to concen-
tration quenching. With increasing Ce3+ content, the shapes of
emission spectra change. Clearly, the emission spectra consist of sev-
eral broad bands which are ascribed to the different coordination
sites in the CSF lattice. For lower doping concentration (b4 mol%
Ce3+), the dominated emission from CSF: Ce3+ is located at around
400 nm. Thus, In this study, we started at CSF:4% Ce3+ and intro-
duced Mn2+ into CSF: Ce3+ to investigate the effect of Mn2+ doping
on the luminescence and its energy-transfer mechanism.

The excitation and emission spectra of the Ce3+ or Mn2+ singly
doped phosphors are shown in Fig. 3(a) and (b). The PL spectrum
of CSF: 0.04Ce3+ displays a broad band extending from 340 to
600 nm, which attributed to the transition from 5d level to the
ground state of Ce3+. The excitation spectrum monitored at
500 nm shows a broad absorption band within the 300–400 nm UV
range, which is due to 4f–5d transition of the Ce3+. CSF: 0.1Mn2+

phosphor presents a band at 580 nm at 406 nm excitation, which
corresponds to the 4T1(4G)→ 6A1(6S) transition of Mn2+. The exci-
tation spectrum of CSF: Mn2+ phosphor consists of several bands
centered at 359 and 406 nm, which are assigned to the transitions
from 6A1(6S) to 4T2(4D) and 4T2(4G) levels of Mn2+, respectively
Fig. 4. The emission spectra of Ce3+, Mn2+ co-doped CSF at various Mn2+ concentra-
tions. (a) y=0; (b) y=0.04; (c) y=0.08; (d) y=0.12; (e) y=0.16; (f) y=0.20.
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Fig. 5. CIE chromaticity diagram of CSF: 0.04Ce3+, yMn2+ phosphors under 365 nm
excitation.
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[11]. The intensity of the Mn2+ emission is weaker than that of the
Ce3+ emission in the CSF host, which is due to the forbidden d–d
transition of Mn2+. We have observed a significant spectral overlap
between the Ce3+ PL and Mn2+ PLE spectra, indicating the possibil-
ity of energy transfer from Ce3+ to Mn2+ in CSF. Fig. 3(c) illustrates
the PLE and PL spectra of CSF: 0.04Ce3+, 0.12Mn2+. It is found that
the PLE spectrum monitoring the yellow emission of the Mn2+ is
similar to that monitoring the green emission of Ce3+, demonstrat-
ing the existence of energy transfer from Ce3+ to Mn2+ in CSF
systems.

Fig. 4 shows the emission spectra of Ce3+, Mn2+ co-doped CSF
various Mn2+ concentrations(y=0, 0.04, 0.08, 0.12, 0.16, 0.2). The
PL intensity of Mn2+ at 580 nm which increases with increasing
Mn2+ content further supports the occurrence of the ETCe→Mn

mechanism. The energy transfer efficiencies (ηT) can be expressed
by ηT=1− Is/Is0 where Iso and Is are the peak intensities of the sen-
sitizer Ce3+ without and with the activator Mn2+ present. As a con-
sequence, the ηT from Ce3+ to Mn2+ in CSF was calculated as a
function of y and is represented in Fig. 4 inset. With increasing
Mn2+ content, the ηT was found to increase and reach the saturation
when y is above 0.2.

The above results indicate that energy transfer between Ce3+ and
Mn2+ exists in the phosphor CSF: 0.04Ce3+, yMn2+, and the ratio be-
tween the blue emission and the yellow emission could be tuned by
adjusting the concentration of Ce3+ and Mn2+, respectively. The in-
tensity ratio of blue and yellow affects the CIE chromaticity of
phosphors, thus the effect of Mn2+ dopant contents on the CIE chro-
maticity coordinates is investigated in CSF: 0.04Ce3+, yMn2+ phos-
phors excited at 365 nm and the corresponding CIE are represented
in Fig. 5. It is observed that the (x,y) coordinates of CSF: 0.04Ce3+,
yMn2+ phosphors vary systematically from (0.24, 0.38), (0.29,
0.39), (0.35, 0.42), (0.40, 0.44) to (0.48, 0.45), with the increase of
Mn2+ contents from 0 to 20 mol%, corresponding to the change of
emission color from blue to yellow. As the contents of Mn2+ further
increase to 16 and 20 mol%, the value CIE chromaticity of phosphor
does not change remarkably, and this may be due to the effect of con-
centration quenching from Mn2+.

4. Conclusion

In summary, a new dual-tunable Ca4Si2O7F2:Ce3+, Mn2+ phos-
phor is synthesized and investigated. The effect of Ce3+ concentra-
tion on the emission intensity and energy transfer from sensitizer
Ce3+ to activator Mn2+ in Ca4Si2O7F2 host has been studied. The
emission color of the obtained phosphors can be easily modulated
from blue to near-white and eventually to yellow by simply adjusting
the amount of Mn2+ ions due to the different emission compositions
of the Ce3+ and Mn2+ ions. These results indicated that Ca4Si2O7F2:
Ce3+, Mn2+ may serve as a potential color-tunable NUV phosphor
for white-light LED devices.
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