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For an open-loop liquid-crystal adaptive optics system, its performance is mainly limited by the time delay.
We propose a new modal recursive least-squares (RLS) predictive algorithm to overcome this problem.
The RLS algorithm has a simple architecture, low computational complexity and a high converging speed.
The impact of the number of the foreword prediction frame N and the number of the predictor order M of
the RLS predictor is analyzed in detail. The results show that the best foreword prediction frame N must be
equal to the system loop delay frame SLDF. The appropriate predictor order M of the RLS predictor is equal
to 2 or 3 when there is no measurement noise and it depends on noise ratio NR when the measurement
error cannot be neglected. We present numerical simulations to show the significant improvements brought
by the RLS predictor.
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1. Introduction

Liquid-crystal (LC) correctors have been shown to have very high
precision in generating a desired wavefront [1–3], and have good re-
peatability and linearity [4], which is beneficial to open-loop control.
Our group has reported to use open-loop LC adaptive optics systems
(AOS) to observe space objects and human retinas [5–7]. However,
the time lag from detection to compensation may have a major limi-
tation to the performance of such a kind of systems, especially to the
systems of turbulence compensation.

A priori, the time delay could be reduced by predictors. Indeed
several papers have shown that atmospheric turbulence measured
by Shack–Hartmann (SH) sensor is predictable [8,9]. Predictors have
already been studied in closed-loop AOS based on deformable mirrors
(DM) [10–15]. In the open-loop regimes, Michael Lloyd-Hart and Pat-
rick McGuire et al. have concentrated on the linear zonal prediction of
wavefront slope [16,17]. Jorgenson, Aitken and Montera et al. have
used artificial neural networks to predict turbulence wavefront
slope [18–20]. For the zonal slope prediction, it can take good advan-
tage of the wind-velocity information from the wavefront sensor, but
it has a relatively larger computational complexity than modal
coefficient prediction. For the artificial neural networks, they need a
huge number of training data (hundreds of thousands of training
frames) and are plagued when running into local minima in the train-
ing error surface [17].

The recursive least-squares (RLS) algorithm is a classical adaptive
filter algorithm. It has a simple architecture and converges to the
most optimized solution with a global minimum error. When it is
used for the training of linear predictors, it has been reported that
its speed of convergence is two orders of magnitude faster than that
of artificial neural network [17]. Furthermore, its computational com-
plexity is small and it can track the dynamic turbulence on real-time.
Michael Lloyd-Hart and Patrick McGuire et al. have shown the feasi-
bility of the RLS algorithm to be used for predicting the open-loop
zonal slopes of wavefront [17]. However, they have not applied this
technique to an open-loop AOS. Due to the millions of pixels of the
LC correctors, usually the modal control is employed to an LC AOS.
Therefore, it is straightforward to build a modal predictor that direct-
ly predicts the modal coefficient of each control mode. Furthermore,
the modal prediction has a relatively low computational cost.

In our research, we apply the RLS algorithm to an open-loop LC
AOS, and build a modal RLS predictor to process the Zernike coeffi-
cients mode by mode. In Section 2, the open-loop predictive architec-
ture and the RLS predictive algorithm are introduced. In Section 3 we
discuss the generation of the data used in the simulation of modal RLS
prediction. In Section 4, we discuss the prediction tests and results of
the RLS predictor, including the choices of the order of the predictor,
the number of the forward predictive frames to achieve better results.
Finally, in Section 5, we provide the overall conclusions.
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Fig. 2. The time sequence of the liquid-crystal open-loop adaptive optics system.
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2. RLS modal predictive algorithm

2.1. Open-loop modal predictive architecture of LC AOS

The block diagram of a typical open-loop modal prediction of an
LC AOS is shown in Fig. 1. A predictive correction loop includes sever-
al steps. First, the wavefront sensor (WFS) collects light and reads out
the data. Second, the control computer begins to calculate the cen-
troids of light spots and local slopes, and then reconstructs the Zer-
nike coefficients. Third, the RLS predictor estimates a new set of
Zernike coefficients based on several group of previous reconstructed
Zernike coefficients. Finally, according to the estimated Zernike coef-
ficients, a gray map (quantified wavefront map to drive the LC correc-
tor) is calculated and sent to the head of a liquid-crystal on silicon
(LCOS) wavefront corrector. After the transmission of the gray map
and the response of LC steps are finished, the turbulence wavefront
is corrected. The gray map is holding on the LCOS until the next
new gray map is transmitted to the LCOS.

The time series of a predictive correction loop includes exposure
time (1 ms), data outputting time (1 ms), calculating time (0.6 ms),
data transmission time (0.4 ms), and LC response time (2 ms).
These times match the time consumption of a new LC AOS designed
by ourselves recently. The calculating time includes the times of cen-
troid and slope calculation, Zernike coefficient reconstruction, RLS
prediction and gray map calculation. The total delay time of a correc-
tion loop is 5.0 ms [see Fig. 2]. As the sampling frequency is 1000 Hz
(a frame transfer mode is used), the system loop delay frame
(SLDF) is 5. This is a very important factor that needs to be considered
for the RLS predictor to improve the system performance.

It is should be noted that the sampling frequency fs of the WFS is
1000 Hz, but the correction frequency of the LCOS is only 500 Hz [1/
(2 ms)]. It attributes to the mismatch of the exposure time and the
LC response time. In this case, the gray map is calculated for every
frame, but only the odd frames are sent to the LCOS. It is obvious
that the reconstructed frequency of the Zernike coefficients for the
RLS predictor is equal to the sampling frequency fs of the WFS,
which equals to 1000 Hz for the actual LC AOS.

2.2. The RLS algorithm for modal turbulence prediction

RLS predictor is an expansion of the RLS filter which is an adaptive,
time-update version of filter. The purpose of the RLS predictor is to
minimize the weighted sum of squared predictive error. When
given a time array of a certain Zernike coefficient [c(1), c(2), …, c
(n), … ] , the predictor computes their output according to

ĉ nþ Nð jnÞ ¼
XM−1

k¼0

ωkc n−kð Þ;n ¼ 1;2;3;… ð1Þ

where M is the order of the predictor, N is the number of foreword
predictive frames, ĉ nþ Nð jnÞ is the predicted value. Find recursively
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in time the parameters {ω1(n), ω2(n),…, ωM(n)}such as to minimize
the sum of squared error

J nð Þ ¼
Xn
i¼1

λn−i e ið Þ2
h i

¼
Xn
i¼1

λn−i c iþ Nð Þ−
XM−1

k¼0

ωkc i−kð Þ
" #2

; ð2Þ

where the predictive error signal is

e ið Þ ¼ c iþ Nð Þ−ĉ iþ Nð jiÞ ¼ c iþ Nð Þ−
XM−1

k¼0

ωkc i−kð Þ ð3Þ

and the forgetting factorλ reduces the influence of the old data,
0bλ≤1. Eq. (2) is a standard least square criterion. If we find a recur-
sive in time way to compute the weight vector ω nð Þ(in this paper, a
column vector is marked with an underline), then it yields

P
ω nð Þ ¼

P
ω n−1ð Þ þ

P
k nð Þe nð Þ: ð4Þ

The apriori error e(n)is

e nð Þ ¼ c nþ Nð Þ−
P
c nð ÞT

P
ω n−1ð Þ: ð5Þ

The RLS gain
P
k nð Þis

P
k nð Þ ¼ λ−1P n−1ð Þ

P
c nð Þ

1þ λ−1
P
c nð ÞTP n−1ð Þ

P
c nð Þ; ð6Þ

where P(n)is a matrix defined as

P nð Þ ¼
Xn

i¼MþN

λn−i
P
c ið Þ

P
c ið ÞT

" #−1

: ð7Þ

It can also be calculated in a recursive method, which is

P nð Þ ¼ λ−1P n−1ð Þ−λ−1
P
k nð Þ

P
c nð ÞTP n−1ð Þ: ð8Þ

Now we can summarize the RLS modal predictor algorithm as fol-
lows [see Fig. 3]. First, when a new Zernike coefficient c(n+N)is
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Fig. 3. The schematic diagram of the RLS predictor.
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acquired by the RLS predictors, it is used as the desired response of
the predictor. Second, use the last vector ω n−1ð Þ as the weight vec-
tor and use the M terms of Zernike coefficients c nð Þ that N frames
back as the input vector to predict the current coefficientc(n+N)
with Eq. (1). Third, the apriori error can be calculated by Eq. (5) ,
and the RLS gain k nð Þ can be calculated by Eq. (6). Therefore, the
weight vector ω(n−1) can be updated and a new weight vector
ω(n)is achieved through the Eq. (4). Fourth, the Zernike coefficient
of the Nth frames foreword in the future can be predicted with

ĉ nþ 2Nð jnþ NÞ ¼
XM−1

k¼0

ωk nð Þc nþ N−kð Þ: ð9Þ

Last, in order to prepare the calculation for the next loop, the value
of P(n)has to be calculated with Eq. (8). Up to now, the whole predic-
tive process of a certain Zernike modal coefficient of a single time step
is finished. Similarly, the method can be used for the prediction of the
other Zernike modal coefficients. After the prediction of the whole
modal coefficients that are used in the LC AOS is finished, the RLS pre-
dictor waits the next new modal coefficient vector. When a new
modal coefficient vector arrives, the predictor increases the time
step to n+1, and the corresponding predictive steps are the same
as the steps introduced above.

There are two variables that need initial values in order to start the
recursions. One is the weight vector

P
ω 0ð Þand the other isP(0). Typi-

cally, the initialization for
P
ω 0ð Þis

P
ω 0ð Þ ¼ 0, and for P(0)isP(0)=δ−1I,

where I is an identity matrix and δ is a relatively small number with
a recommended value, δ≤0.01σc

2(σc
2is the variance of the time

array of the Zernike coefficient).

3. Data generation

In order to demonstrate what we can gain by using the RLS predic-
tor instead of a general open-loop modal correction based on the pre-
vious detected frame [7], it needs to generate an array of dynamic
turbulence wavefront. There are several steps to produce it. First, a
big static wavefront with an aperture of D which satisfies Kolmogor-
off turbulence spatial statistics has to be obtained. In our simulation,
the aperture D equals 4 m and the method of Zernike polynomials is
used to simulate the static turbulence wavefront [21]. The Wiener
power spectrum of phase fluctuation is used to represent the spatial
statistics of Kolmogoroff atmospheric wavefront. The number of the
Zernike polynomials used to calculate the wavefront is 496, which
makes the structure function of the simulated wavefront satisfy the
5/3 law with negligible error. The aperture D equals to 4000 pixels.
Second, the wavefront in a sub-area of the big simulated wavefront
is used to simulate the wavefront received in the entrance pupil of a
telescope with an aperture of 1.2 m. The Tyler's hypothesis is used
to produce the temporal evolution wavefront array. In order to simu-
late a large number of frames, a random route is used to generate dif-
ferent frames of wavefront. The step length between adjacent frames
is Vwind⋅Δt, where Vwind is the wind speed and Δtis the time interval.
The Δtmust be small enough to make the wavefront change fluently.
At last, the simulated wavefront in the sub-area is fitted to the first 35
terms of Zernike polynomials coefficients which are sent to the RLS
predictor (the actual LC AOS corrects the first 35 terms of Zernike
modes excluding piston).

Before generating the dynamic turbulence wavefront data, we set
a limit to the turbulence wavefront time array. In adaptive optics sys-
tems that do not employ predictive techniques, wind-speed condi-
tions are limited by the correlation between a turbulent wavefront
at the time of measurement and the same wavefront at the time of
correction. This correlation implies that an adaptive optical system
is expected to improve imaging performance when

E ϕ tð Þϕ t þ Tð Þ½ �
E ϕ2 tð Þ� � ≥1

2
; ð10Þ

where ϕ(t) represents the wavefront at the time of measurement,
andϕ(t+T) represents the wavefront at the time of correction. The
left-hand side is determined by the system delay T, by the measure-
ment noise ratio NR, by the Fried Parameter r0 and by the magnitude
of the wind speed Vwind. In this paper, each time array of turbulence
wavefront we generated is in accordance with Eq. (10).

The measurement noise is also taken into account. In the simula-
tion, the white noise is added into the Zernike coefficients according
to the noise ratio (NR). NR is expressed as the ratio of the measure-
ment noise standard deviation to the average of the Zernike coeffi-
cient standard deviation.

Fig. 4 shows the summation of the power spectrum density (PSD)
of the 35 Zernike coefficient time arrays that are produced by the
method mentioned above. It illustrates that the PSD is proportion to
f−17/3at high frequency, which is in accordance with Kolmogorov tur-
bulence [22,23].

4. Prediction test

We first investigated the convergence of the RLS algorithms. Then,
in order to choose an appropriate number of the foreword predictive
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frame N and the number of predictor order M, we investigated the
root mean square (RMS) error with prediction (RMSpre) versus differ-
ent N and versus differentM under several important conditions, such
as Vwind, Fried parameter r0, M(only for the choice of N), SLDF, fs and
NR. Last, we evaluated the predictive performance.

4.1. Convergence of the RLS algorithm

The inputs of the algorithm are the 35 Zernike modal coefficients
with white measurement noise added. The algorithm converges
quickly in most cases, i.e., in less than 2000 iterations. Fig. 5 shows
the convergence of the predictor parameter for the 16th Zernike
mode. It can be seen that all these predictor parameters converge
after 1500 frames.

4.2. The choice of the number of the foreword predictive frame N

It needs to emphasize that the RMSpre is the RMS of the residual
wavefront between the predicted wavefront and the true wavefront
at the time of correction. The relation between RMSpre and Nwas calcu-
lated with a single variable Vwind as shown in Fig. 6(a). The other pa-
rameters are all fixed. It is obvious that when N equals to five that is
the same as the SLDF, the RMSpre of each curve that with a different
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Fig. 5. The convergence of the predictor parameter for the 16th Zernike mode. Condi-
tions: SLDF=5, N=5, Vwind=15 m/s, r0=6 cm, fs=1000 Hz, NR=5%.
fixed Vwind reaches its corresponding minimum value. It is demonstrat-
ed that when the RLS predictor reaches the minimum predictive error,
the choice of N is independent of Vwind. Furthermore, when N is smaller
or larger than 5, the RMSpre would increase with a speed proportional
to Vwind. The bigger the Vwind, the larger the minimum RMSpre is.

The relationship between RMSpre and N was also calculated with a
single variable r0 [see Fig. 6(b)], with a single variableM [see Fig. 6(c)]
and with a single variable NR [see Fig. 6(d)]. In all these cases, it is
when N equals to SLDF that the RMSpre can reach a minimum value.
It shows a fact that the choice of N is independent of r0, M and NR

when the RLS predictor reaches the minimum predictive error.
In order to confirm the idea that the best N is always equal to SLDF,

we calculated the relation between RMSpre and N with a single vari-
able SLDF as shown in Fig. 6(e). It is demonstrated that only when
N equals to SLDF, can the RMSpre reach its minimum value. Further-
more, Fig. 6(e) also shows that the minimum RMSpre is proportional
to SLDF. When the sampling frequency fs changes, the SLDF would
change accordingly of which the AOS has a constant loop delay
time. The RMSpre reaches a minimum value when N equals to the cor-
responding SLDF as shown in Fig. 6(f). Though more numerical simu-
lation, it confirms us that the best N is only determined by the SLDF.

In order to explain why the best N is only determined by the SLDF,
we have researched the RMS error of the residual wavefront between
the predicted wavefront and the true wavefront to be predicted ver-
sus different predicted time interval. Both of the direct correction
method that corrects wavefront based on the previous frame and
the RLS predictive method are considered. For the direct correction
method, the main residual error is induced by the time delay. Howev-
er, for the RLS predictive method, the main residual error is deter-
mined by the precision of the prediction. As shown in Fig. 7, the
predicted error is always smaller than the wavefront error induced
by time delay for different time interval. It is also true under different
turbulence conditions which are in accordance with Eq. (10). That is
the reason why the predictive time must always be equal to the sys-
tem loop delay time as discussed above. What's more, the longer the
predictive time, the bigger the predictive error is. It implies that it is
more difficult to predict the wavefront with long time interval.

4.3. The choice of the number of the predictor order M

We calculated the relationship between RMSpre and M with a sin-
gle variable Vwind , r0, SLDF, fs and NR as shown in Fig. 8. As shown in
Fig. 8(a)–(d), the RMSpre reaches the minimum value when M is
equal or larger than two when NR equals zero. This phenomenon
does not change with the Vwind , r0, SLDF and fs. However, it is not
the same as NR. When RMSpre reaches the minimum value, for differ-
ent NR, it needs a different M as shown in Fig. 8(e). With data under
more conditions, we have concluded that the M is only related to
the NR when RMSpre reaches its minimum value.

4.4. Evaluation of the predictive performance

An ordinary open-loop LC AOS corrects the turbulent wavefront
based on previous detected frame. However, for an open-loop LC
AOS with RLS predictor, it corrects the turbulent wavefront based
on the predictive frame. Therefore, we evaluated the RLS predictor
performance through comparing it with an ordinary open-loop LC
AOS. To quantify what is gained by using the predictor rather than
the ordinary LC AOS, we define the following parameters:

RMS ¼
X
mode

ε2mode

* +1=2

;η ¼ 1−
RMSpre
RMSunpre

;

ηmode ¼ 1−
ε2mode

D E1=2

pre

ε2mode

� �1=2
unpre

; SR ¼ e−RMS2
;

ð11Þ
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where εmodeis the residual Zernike coefficient of mode number mode,
RMS is the root mean square of the total residual wavefront error,
RMSpre and RMSunpre are the RMS obtained with RLS predictor and
an ordinary LC AOS, respectively. 〈εmod e

2 〉pre
1/2and 〈εmod e

2 〉unpre
1/2 are the

root mean square of the Zernike coefficient of mode number mode
obtained with a RLS predictor and an ordinary LC AOS, respectively.
The higher the η or ηmode, the more we gain by using the RLS
predictor.

We now evaluate the general trend for η or ηmode and Strehl ratio
SR. Fig. 9 shows the η versus noise ratio NR for two fs. Fig. 10 presents
SR versus NR for prediction on and off under two different Greenwood
frequencies (Fg). When prediction is off, the system equals to an ordi-
nary LC AOS that corrected the wavefront based on the previous mea-
sured frames. These two graphs show that the RLS predictor always
works better than the corresponding ordinary LC AOS. Fig. 9
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demonstrates that the gain η is higher when the NR is low and fs is
high. This can be interpreted in the following way. When the NR is
high, the measurements is much noisy, which are used as the
“truth” of the predictor, causing it to predict wrong wavefront.
When fs is high, the measurement time step is short, which can pro-
vide more new messages about the move trend of the turbulent
wavefront. As shown in Fig. 10, the SR is decrease with the NR and
Fg for both RLS predictor and the ordinary LC AOS. When the noise
ratio NR=0, the SR after prediction can reach as high as 90%.

Fig. 11 shows the relationship between ηmode and Zernike mode
index. As the Zernike mode index increasing, ηmode is decreasing line-
arly from 55% to 30%. There are two main reasons for this. First, with
the increase of the Zernike mode index, the signal-to-noise ratio of
Zernike polynomials which is defined as the ratio of the mode turbu-
lence variance to the variance of the noise propagated on the mode is
decreasing. Second, the Zernike mode cutoff frequency increases with
the radial order of the Zernike polynomials.

We also compared the predictor with the one worked in a closed-
loop system in reference [13]. Both predictors are based on the RLS
method. As shown in Fig. 9 of reference [13], the predictive gain of
the predictor in closed-loop system is between 45% and 30% for the
first 35 Zernike modes. The corresponding Fg is 8.6 Hz (D/r0=10, V/
D=2 Hz, Fg=0.43 V/r0=8.6 Hz) and the NR=2% (SNR=50). But
for the predictor described in this paper, the predictive gain is be-
tween 55% and 30%, which is nearly the same as that of the predictor
worked in closed-loop system. However, the corresponding turbu-
lence condition and noise are muchmore serious. The Fg is 108 Hz (V-
wind=15 m/s, r0=6 cm, Fg=0.43 V/r0=108 Hz) and the NR is 5%. So
it is obvious that the predictor that works in an open-loop system has
much better performances. It is mainly due to the feedback of the
closed-loop system. The predictive error in a closed-loop system
would be feedback to the system again, which would be added to
the import Zernike coefficients of the predictor in next loop. Howev-
er, the predictor in open-loop system has no such a kind of problem.
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Fig. 8. The RMS predictive error versus different number of predictor order under different conditions. Conditions: (a) SLDF=5, N=5, r0=6 cm, fs=1000 Hz, NR=0;(b) SLDF=5,
N=5, Vwind=10 m/s, fs=1000 Hz, NR=0;(c) N=SLDF, Vwind=10 m/s, r0=6 cm, fs=1000 Hz, NR=0; (d) SLDF=1(fs=250 Hz), SLDF=2(fs=500 Hz), SLDF=4(fs=1000 Hz),
N=SLDF, Vwind=10 m/s, r0=6 cm, NR=0; (e) SLDF=5, N=5, Vwind=10 m/s, r0=6 cm, fs=1000 Hz.
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5. Conclusion

In this paper we investigated the modal RLS prediction that used
on the open-loop liquid-crystal adaptive optics systems, which has a
simple architecture, low computational complexity and a high con-
verging speed. The impact of the number of the foreword predictive
frame N and the number of predictor order M of the RLS predictor is
analyzed respectively. The results demonstrated that the best fore-
word predictive frame N must equal to the system loop delay frame
SLDF since the predictive error is always smaller than the correspond-
ing time delay error. The appropriate predictor order M of the RLS
predictor is equal to 2 or 3 when there is no measurement noise
and it depends on noise ratio NR when the measurement error cannot
0

10

20

30

40

50

60

70

80

0 2 5 10 15 20

fs=1000Hz

fs=200Hz

Noise level (%)

η 
(%

)

Fig. 9. Predictive gain versus noise level. Conditions: SLDF=5, N=1(fs=200 Hz),
N=5(fs=1000 Hz), Vwind=15 m/s, r0=6 cm, M=2(NR=0%), M=3(NR=2%),
M=5(NR=5%), M=7(NR=10%), M=8(NR=15%), M=9(NR=20%).
be neglected. For an ordinary turbulent condition with Greenwood
frequency of 63 Hz, the open-loop LC AOS with RLS prediction can
reach a gain as high as about 70% than the same open-loop LC AOS
without prediction and the SR can reach about 0.7 from 0.02 when
there is no measurement error. With the increase of the noise ratio
NR, the predictive gain and the Strehl ratio is decreasing. With the in-
crease of the sampling frequency, the predictive gain is increasing.
However, when the turbulence becomes more fast, the predictive
gain would decrease. In the near further, we will publish the results
obtained from a real open-loop LC AOS system under real turbulent
condition.
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Fig. 10. Strehl ratio versus nosie leveal with and without prediction. Conditions:
SLDF=5, N=5, fs=1000 Hz, M=2(NR=0), M=3(NR=2%), M=5(NR=5%), M=7
(NR=10%), M=8(NR=15%), M=9(NR=20%).
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