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a b s t r a c t

Six-bar parallel mechanism is now widely applied in synchrotron radiation beamline, while the

six-dimensional adjustment is difficult and inefficient for lack of theoretical direction. This paper

introduces a special six-bar parallel mechanism. By means of coordinate transformations, the inverse

kinematics of six-bar parallel mechanism is studied, and the precise equations for six bars’ lengths are

obtained. Based on the inverse kinematics, forward kinematics of six-bar parallel mechanism is

obtained with trust region method working for nonlinear optimization. The corresponding MATLAB

program is also designed. The results show that trust region method is an effective way to solve

forward kinematics, and the program is stable, reliable and rapid. This method has small errors with

linear precision of 10�12 mm and rotational precision of 10�15 deg. Using differential snail adjustment,

monochromator chamber’s attitude can reach a linear resolution of 5 mm and a rotational resolution of

300 , which entirely satisfies the practical requirements.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Parallel mechanisms are being preferred in many applications,
as they have advantages of higher stiffness, better accuracy,
greater stability and more compact structure over serial mechan-
isms [1–3]. Beamline is an important part of synchrotron radia-
tion facility, which is primarily made up of monochromator,
focusing mirror system and so on. The key components, mirrors
in these systems, are all adjusted by fine mechanisms. Wherein
six-bar parallel mechanism, which has six degrees of freedom, is
playing a more and more important role in the field [4–8].

In recent years, study of parallel mechanisms has been a
hotspot of mechanism study in the world [9]. Referring to the
kinematics analysis of parallel mechanisms, given the position
and orientation of the moving platform, to determine the lengths
of all bars, the whole process is called inverse kinematics. Contra-
rily, given the lengths of all bars, to determine the position and
orientation of the moving platform, is called forward kinematics
[10,11]. It is known that it’s relatively easy to work out inverse
kinematics of parallel mechanisms, while forward kinematics is
much more complicated and is becoming a big problem all over
the world [9]. Moreover, forward kinematics is the foundation for
applications of parallel mechanisms [3]. To solve the problem,
there are two algorithms: analytic solution and numerical
ll rights reserved.
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method. Analytic solution can obtain all results of the equations,
but it is complicated thus limiting its applications. Though
numerical method depends on the iterative initial value, its
mathematic models can be easily built and real solutions of all
kinds of parallel mechanisms will be obtained quickly. Therefore,
numerical method is widely used to solve forward kinematics
problem [11].

A special six-bar parallel mechanism is being applied in the
monochromator of STXM beamline, one of the first-built beam-
lines in Shanghai Synchrotron Radiation Facility (SSRF). Its
physical and mathematic model is set up in the paper. By means
of coordinate transformations, the inverse kinematics of six-bar
parallel mechanism is studied, and the precise equations for six
bars’ lengths are obtained. Curves of six bars’ lengths are repre-
sented after simulation and calculation by MATLAB. Then based
on inverse kinematics, trust region method, a nonlinear program-
ming algorithm, is used to solve the forward kinematics problem.
MATLAB simulation and calculations show that the results are
quite accurate and can be obtained very fast by using the trust
region method, which provides important guidance in our
practical work.
2. Inverse kinematics of six-bar parallel mechanism

Parallel mechanisms were first introduced by Stewart in the
1960 s [12]. Its original model is shown as Fig. 1 and that’s the
classic model of six-bar parallel mechanism. It has six degrees of
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Fig. 1. Classic model of six-bar parallel mechanism.

Fig. 2. Physical model of six-bar parallel mechanism.

Fig. 3. Kinematic diagram of six-bar parallel mechanism.

Q. Lu et al. / Nuclear Instruments and Methods in Physics Research A 674 (2012) 8–14 9
freedom and its six flexible bars are connected to mobile joints at
the fixed base and moving platform.

A special six-bar parallel mechanism, as shown in Fig. 2, is
always applied in synchrotron radiation beamline facilities.
Unlike the classic model, it has three vertical and three horizontal
bars, whose lengths are fine adjusted by differential screws in
particular. Upper and lower joints are not at the same plane. This
mechanisms’ configuration is space-saving and easy to operate.

2.1. Establishing coordinate systems

From the model shown in Fig. 2, the fixed base coordinate
frame O-xyz is established firstly. Set the fixed plane Oxy by the
lower joints of three vertical bars. Point O, origin of the frame, is
located in the center of fixed base. Directions of coordinate axes x,
y, z, are determined by the right-hand rule, as shown in Fig. 3.
Therefore, coordinates of six lower joints in O-xyz are Ai¼{Aix, Aiy,
Aiz}

T (i ¼1, 2, y, 6).
Establish the moving platform frame O0-x0y0z0. Set the moving

plane O0x0y0 by the upper joints of three vertical bars. Actually,
mirrors in synchrotron radiation beamline facilities are always
higher than the moving plane, thus O0 is located right above plane
O0x0y0 with the height of h in the paper. Three axes of two frames
are parallel to each other at the initial time. Namely, coordinates
of six upper joints in O0-x0y0z0 are Bi

0 ¼ {Bix
0 , Biy

0 , Biz
0 }T (i¼1, 2, y, 6).

2.2. Inverse kinematics

Set (a, b, g) are the RPY (Roll-Pitch-Yaw) angles and P¼{XP, YP,
ZP}T is the coordinate of O0 in O-xyz. Coordinates of six upper joints
in O-xyz can be written in the following way by means of
coordinate transformations

Bi ¼ RB0iþPði¼ 1,2,. . .,6Þ ð1Þ

whereas R is the attitude matrix from O0-x0y0z0 to O-xyz [11,15]

R¼ Yawðz,gÞPitchðy,bÞRollðx,aÞ

¼

cg �sg 0

sg cg 0

0 0 1

2
64

3
75

cb 0 sb
0 1 0

�sb 0 cb

2
64

3
75

1 0 0

0 ca �sa
0 sa ca

2
64

3
75 ð2Þ

where c is on behalf of cosine rules and s is sine rules.
Bars’ length vectors li in O-xyz are

li ¼ Bi�Ai ¼ ðBix2AixÞxþðBiy2AiyÞyþðBiz2AizÞz

¼ lixxþ liyyþ lizzði¼ 1,2,. . .,6Þ ð3Þ

Given the position and orientation of the moving platform,
namely, (a, b, g, XP, YP, ZP) are assumed to be known, lengths of six
bars are as follows

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBix�AixÞ

2
þðBiy�AiyÞ

2
þðBiz�AizÞ

2
q

ði¼ 1,2,. . .,6Þ ð4Þ

Eq. (4) are exactly the inverse kinematic equations of six-bar
parallel mechanism.

Furthermore, varied lengths of six bars are defined as

Dli ¼ li�lði¼ 1,2,. . .,6Þ ð5Þ

where l is the initial length of six bars.
3. Forward kinematics of six-bar parallel mechanism

Forward kinematics is the process of determining the position
and orientation of the moving platform, (a, b, g, XP, YP, ZP), by
given the lengths of six bars li (i¼1, 2, y, 6). From Eq. (4),
constraint equations between the position and orientation of the
moving platform and the bars’ lengths are as follows

f iða,b,g,XP ,YP ,ZP ,liÞ ¼ 0 ði¼ 1,2,. . .,6Þ ð6Þ

Eq. (6) are nonlinear transcendental equations with six
unknowns with trigonometric functions.

The key of forward kinematics is exactly to solve the nonlinear
transcendental equations above. Since the emergence of parallel
mechanism in 1960 s, lots of mechanists have obtained the
closed-form solutions of some kinds of parallel mechanisms using
analytic solutions. But due to the non-linearity of these equations,
there is no complete method that would get the closed-form
solution [3]. While numerical method is a sufficient way that can



Fig. 4. Joints distribution map of chamber’s attitude adjustment.
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solve the forward kinematics problem of all kinds of parallel
mechanisms quickly and conveniently [11].

Trust region method and line search method are two generally
used nonlinear programming. While trust region method is a novel
algorithm developed in latest 30 years. It is reliable and has the
advantage of global convergence which makes the initial values easier
to be found. Hence, study of trust region method has recently become
a very important aspect in the field of nonlinear programming.

The basic idea of trust region method is to solve a relatively
easy subproblem in the neighborhood of current iterate, and a
trust region radius is obtained sequentially. Then the trust region
radius will be expanded or contracted by judging a ratio of the
objective function. The steps are [13]:

Step 1: Suppose an initial value x0, and an initial trust region
radius d0A(0, 1). Let d, Z and e be some constants and satisfy
d40, ZA(0, 0.25), eZ0. Let k¼0.

Step 2: If :rf ðxkÞ:re, then stop; otherwise, go to Step3.rf ðxkÞ

is the Jacobian matrix of objective function f(x) by current iterate
xk.

Step 3: Construct a trust region subproblem using quadratic
approximation, as Eq. (7). Then dk will be obtained.

minfkðxÞ ¼
1

2
dT Bkdþrf ðxkÞ

T d

st :d:rdk ð7Þ

where Bk is a n�n real symmetric matrix.
Step 4: Calculate the ratio rk of the true reduction to the

certain reduction.

rk ¼
Df k

Dfk

¼
f ðxkÞ�f ðxkþdkÞ

fkð0Þ�fkðdkÞ
ð8Þ

Step 5: If Bko0.25, then set dkþ1¼0.25dk, update xkþ1¼xk and
k¼kþ1, jump to Step2; If rk40.75, then set dkþ1¼min(2dk, d),
update xkþ1¼xkþdk and k¼kþ1, jump to Step2; When
0.25rrkr0.75 and rkZZ, then set xkþ1¼xkþdk; otherwise set
xkþ1¼xk. Update dkþ1¼dk and k¼kþ1, jump to Step 2.

Note: The constants 0.25 and 0.75 above are experienced
values and can be replaced by other values between 0 and 1.

As we know, numerical methods always go with a huge
workload. And MATLAB is just such a powerful tool in numerical
calculation, where nonlinear equations can be solved quickly with
its optimization toolbox of trust region method [14]. Therefore,
MATLAB is perfectly applied to solve the forward kinematics
problem of six-bar parallel mechanism in this paper.
4. Application

SSRF is a third-generation of synchrotron radiation light source in
China. Grating monochromator is the key part of STXM beamline at
SSRF, and its chamber is adjusted by six-bar parallel mechanism.
Table 1 shows the requirements of adjust range and resolution.

Referring to the structure in Fig. 3, joints’ positions of mono-
chromator chamber are shown in Fig. 4, where unit is mm. Initial
Table 1
Technical requirements of chamber’s attitude adjustment.

Parameters Adjust range Resolution

XP 75 mm 0.02 mm

YP 75 mm 0.02 mm

ZP 75 mm 0.01 mm

a 71.01 0.11

b 71.51 500

g 71.01 500
length of each bar is considered as l¼211 mm, h¼30 mm, and

Aiz ¼
0; ði¼ 1,3,5Þ

157:5mm; ði¼ 2,4,6Þ
,

(

B0iz ¼
�30mm; ði¼ 1,3,5Þ

�83:5mm; ði¼ 2,4,6Þ

(

4.1. Inverse kinematics

As Table 1 required, inverse kinematic equations of six-bar
parallel mechanism are programmed in MATLAB. MATLAB simu-
lation shows the curves of six bars’ lengths.
(1)
 Set �1.51rar1.51, b¼g¼0, and XP¼YP¼ZP¼0. After
MATLAB calculation and simulation, curves of a vs. six bars’
varied lengths Dli are shown in Fig. 5(a). Similarly, set -
11rbr11, a¼g¼0 and XP¼YP¼ZP¼0, curves of b vs. Dli
are as Fig. 5(b). Set -11rgr11, a¼b¼0 and XP¼YP¼ZP¼0,
curves of g vs. Dli are as Fig. 5(c).
(2)
 Set -5 mmrXPr5 mm, a¼b¼g¼0 and YP¼ZP¼0, we get the
curves of XP vs. six bars’ varied lengths Dli. In view of values of
Dli for six bars differ greatly, 2-D lines with different y-value
on left and right side are plotted using plotyy function in
MATLAB. As shown in Fig. 5(d), left side Dl1 is corresponding
to Dli¼ f(XP) (i ¼1, 2, 3, 5, 6), and right side Dl4 is correspond-
ing to Dl4¼ f(XP). Similarly, set -5 mmrYPr5 mm,
a¼b¼g¼0 and XP¼ZP¼0, curves of YP vs. Dli are as
Fig. 5(e). Initial bars’ length l¼211 mm and ZP¼240 mm,
consequently set 235 mmrZPr245 mm, a¼b¼g¼0 and
XP¼YP¼0, curves of ZP vs. Dli are as Fig. 5(f).
From Fig. 5, the relationship between (a, b, g, XP, YP, ZP) and Dli
(i ¼1, 2, y, 6) is very obvious. Take Fig. 5(d) for example, in the
range of -5 mmrXPr5 mm, Dl4 is much larger than others and it
can be considered as the main factor of XP, which provides a big
hand for our practical fine adjustment in synchrotron radiation
beamline.



Fig. 5. Curves of chamber’s attitude parameters vs. bars’ lengths. (a) a vs. Dli. (b) b vs. Dli. (c) g vs. Dli. (d) XP vs. Dli. (e) YP vs. Dli. (f) ZP vs. Dli

Fig. 6. Block diagram of forward kinematics.
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4.2. Forward kinematics

Forward kinematics of parallel mechanism, as analyzed before,
is based on its inverse kinematics. A block diagram of forward
kinematics using trust region method is programmed in MATLAB
according to the technical requirements of Table 1, shown in
Fig. 6. Where IK is on behalf of inverse kinematics and FK is
forward kinematics.

When programs are running, MATLAB is able to choose a best
trust region radius automatically by using fsolve function, and the
highest convergence rates are obtained. As seen in the process of
MATLAB compute, an optimal solution can be worked out by
forward kinematics after only 3 to 5 iterate times within 1 second.
Suppose the moving platform running in sinusoidal swing on
a, orbit equation a of its center is as follow

a¼ 2sinðpt=5Þ,t¼ 0� 10s ð9Þ



Fig. 9. Deviation da of a0 and a.
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Substituting the orbit equation a to MATLAB program, we get
the varied lengths Dli of six bars by inverse kinematics, as in Fig. 7.
Then substituting Dli to the forward kinematics equations, we get
another orbit equation a’ of its center by MATLAB. Fig. 8 shows
the comparison of two orbits a’ and a. Meanwhile, deviation curve
of a0 and a is indicated in Fig. 9.

Suppose the moving platform runs in screw rotation, orbit
equation t of its center is

XP ¼ sinðtÞ

YP ¼ cosðtÞ

ZP ¼ t

, t¼ 0� 10s

8><
>: ð10Þ

Similarly, substituting t to MATLAB program, varied lengths Dli
of six bars are shown as Fig. 10. Fig. 11 shows the comparison of t0

and t. Deviation curves in three coordinate axes directions are
indicated in Figs. 12–14.

It is apparent that the solved curves by trust region method
coincide with the given curves and errors between them are
extremely small. When moving in swing equations, the
largest angular error is only 4�10�15 deg. When moving in screw
rotation, the largest axial errors in X, Y, Z direction are 6.4�10�12,
5.2�10–12, 5.2�10–12 mm, the largest comprehensive axial error
Fig. 7. Variation of bars length Dl.

Fig. 8. Given curve a vs. solved curve a0 .

Fig. 10. Variation of bars’ length Dl.
is 7.8�10–12 mm. These errors are much smaller than technical
requirements in Table 1 and could be ignored in our practical work.

When adjusting the monochromator chamber’s attitude, bars’
lengths change can easily get a resolution of 5mm by using
differential snail adjustment. Set Dli¼75 mm(i¼1, 2, y, 6), and
there are 26 permutations. Substituting each permutation to the
forward kinematics program, maximum errors of the position and
orientation parameters are obtained and listed in Table 2. The
results are smaller than the project’s resolution requirements and
entirely satisfy the technical requirements of monochromator
chamber’s attitude.
5. Conclusion

The six-bar parallel mechanism proposed in the paper is a
special configuration being applied in several mirror systems of
Shanghai Synchrotron Radiation Facility beamlines. After setting
up the physical and mathematic model, inverse kinematics of
six-bar parallel mechanism is studied in detail by means of
coordinate transformations, the precise equations for six bars’



Fig. 11. Given curve t vs. solved curve t0 .

Fig. 12. X-deviation dXP of t0 vs. t.

Fig. 13. Y-deviation dYP of t0 vs. t.

Fig. 14. Z-deviation dZP of t0 vs. t.

Table 2
Maximum errors of chamber’s attitude adjustment.

Parameters Maximum errors Resolution requirements

dXP 4.9mm 0.02 mm

dYP 5.1mm 0.02 mm

dZP 4.9mm 0.01 mm

da 2.900 0.11

db 2.900 500

dg 3.700 500
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lengths are obtained. Curves of six bars’ lengths are represented
after simulating and calculating by MATLAB, which make our
practical fine adjustment easier, faster and more convenient.

Forward kinematics of six-bar parallel mechanism is exactly to
solve a series of nonlinear transcendental equations with six
unknowns. As an important nonlinear numerical algorithm, trust
region method has advantages of global convergence and stabi-
lity. Based on the inverse kinematics, the corresponding program
is designed with trust region method in MATLAB, forward
kinematics is solved finally in this paper. As seen in the process
of MATLAB compute, an optimal solution can be worked out by
forward kinematics after only 3 to 5 iterate times within 1 second.
Given the orbit equation of the moving platform, solved curves
will be obtained by MATLAB automatically. Simulation results
show that errors between given orbits and solved orbits are
extremely small, with linear precision of 10–12 mm and rotational
precision of 10–15 deg. Guided by the analysis above, using
differential snail adjustment, monochromator chamber’s attitude
can reach a linear resolution of 5 mm and a rotational resolution of
300, which entirely satisfies the practical requirements.
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