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A B S T R A C T

The adaptive neuron-fuzzy inference system (ANFIS) is an effective modeling tool developed recently. It

has gained much interest in solving classification and function approximation. In this paper, a new

application based on ANFIS was presented for nondestructive determination of thiamphenicol powder

drug with near-infrared (NIR) spectroscopy. The principal component analysis (PCA) technique was

applied to extract relevant features from a number of spectral data in order to reduce the input variables

of the ANFIS. The generated scores of the principal components (PCs) subsequently were used as the input

variables of the ANFIS instead of the spectra data and constituted the principal component analysis-

adaptive neuron-fuzzy inference system (PCA-ANFIS) model. A hybrid-learning algorithm which

combined the least squares method and the gradient descent method was applied to optimize the

parameters of PCA-ANFIS. Various optimum PCA-ANFIS models based on the conventional spectra and

pretreated spectra (standard normal variate (SNV), multiplicative scatter correction (MSC) and the first-

derivative) were established and compared. Experiment results indicated that the PCA-ANFIS model

obtained from data sets achieved satisfactory accuracy, and the PCA-ANFIS approach with MSC

pretreated spectra was found that it provided the best results. In order to present the advantages of PCA-

ANFIS, the principal component regression (PCR) was also used, which was compared with PCA-ANFIS.

Experiment results showed that the proposed PCA-ANFIS was more efficient than PCR.

� 2012 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Reflectance near-infrared spectroscopy is a rapid, cost-effective
and nondestructive technique. It has been applied widely in
agricultural, textile, petrochemical and pharmaceutical industries
[1–4], especially the application of NIR spectroscopy for the
analysis of pharmaceutical samples has been significantly in-
creased during the last decade [5–7]. Multivariate calibration
methods are usually used to extract relevant information from NIR
spectral data to predict analyte concentrations or properties of
complex samples. Principal component regression (PCR) and
partial least squares regression (PLS) as two of the multivariate
calibration methods are most frequently used [8,9]. However the
both methods possess some deficiencies such as modeling of data
sets containing strong nonlinear relationships [10], whereas there
always exists nonlinear mapping between the spectral data and
concentration of the component [11–13].
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In recent years, artificial neural networks (ANNs) have been
widely applied as a chemometrics method. Their ability to handle
nonlinearities makes them a valuable contribution to the disci-
pline. It has been demonstrated that it is possible to obtain
excellent results for dealing with multivariate calibration pro-
blems with ANNs [14,15]. However, ANNs still faces certain
drawbacks when dealing with highly dimensional systems within
the input space, i.e., the ‘‘curse of dimensionality’’ [16–19].
Principal component analysis is regarded as the main extraction
method and can reduce redundant variables from the original
input data [20]. Through PCA analysis, the original multiple
variables can be represented by several principal components and
lead to the reduction of input dimension in the ANN model.

Since Zadeh proposed the fuzzy logic theorem to describe
complicated systems; fuzzy inference system (FIS) has became
very popular and been successfully used in various scientific areas.
One of the successful fuzzy applications is to model complex
nonlinear systems by a set of fuzzy rules. One important property
of fuzzy modeling approaches is that FIS can approximate virtually
any nonlinear functions to arbitrary accuracy provided that
enough rules are given [21]. The major benefit of FIS is that its
hed by Elsevier B.V. All rights reserved.
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knowledge representation is explicit, using simple IF–THEN
relations. But this model uses the human-determined membership
functions that are fixed. Therefore, they are rarely optimal in terms
of reproducing the desired outputs. In the last decade, the
integration of ANN and FIS has given birth to new research into
neuron-fuzzy systems. Neuron-fuzzy systems have the potential to
capture the benefits of both these fields in a single framework. A
popular framework of neuron-fuzzy is the adaptive neuron-fuzzy
inference system (ANFIS), which shows the significant results in
nonlinear modeling. ANFIS has attracted the growing attention and
interest in robot control, pattern recognition, data analysis,
decision making, nonlinear noise cancellation, etc. [22–26].

The purpose of this work is to develop a nondestructive
quantitative analysis method of pharmaceutical sample based on
PCA-ANFIS and NIR spectroscopy. The proposed method can be
divided into two stages. In the first stage, PCA is applied to
compress a large number of data to much smaller principal
components and generate principal component scores that
subsequently are used as the input variables of the ANFIS instead
of original data. In the second stage, ANFIS model is built to create
the fuzzy inference system and then to determine the concentra-
tions of pharmaceutical samples. Various PCA-ANFIS models based
on conventional spectra and pretreated spectra (SNV, MSC and the
first-derivative) have been successfully achieved respectively.
Among all the pretreated spectra of PCA-ANFIS models, only the
PCA-ANFIS model on MSC spectra has the smallest root-mean-
square-error (RMSE) and the highest correlation coefficient (R);
thus the application of the MSC spectra obtains the best model and
satisfactory results.

2. Theoretical

2.1. Principal component analysis

PCA is a classical statistical method which has been extensively
applied in almost every discipline, chemistry, biology, engineering,
meteorology, etc. There are some excellent descriptions of the
algorithm of PCA [27,28] and this paper will provide only a general
overview. The most important application of PCA is to reduce the
number of original variables and represent a multi-dimensional
data table in a low-dimensional space with minimal loss of
information of the original data set. PCA decomposes an X matrix
into two smaller matrices, one of scores (T) and the other of
Fig. 1. ANFIS structure for three input S
loadings (P) as follows:

X ¼ TPT (1)

The method generates a new set of variables (loadings) which is
called PCs. Each PC is a linear combination of the original variables.
All the PCs are orthogonal to each other, so there is no redundant
information. The PCs are extracted so that the first PC accounts for
the maximum variance of the original multivariate data set, and
the second PC explains the maximum variances of the residual data
set. Then, the third one will describe the most important variability
of the next residual data set and so on. Generally, only a handful of
PCs are enough to account for the most variance of the original data
set.

2.2. Adaptive neuron-fuzzy inference system

The ANFIS is a multilayer feed-forward network which used
neural network learning algorithms and fuzzy reasoning to map an
input space to an output space [29]. It implements a first-order
Sugeno fuzzy model. For simplicity, we assume that the fuzzy
inference system under consideration has three inputs x, y and z,
and one output f. For a first-order Sugeno fuzzy model, a typical
rule set with two fuzzy if–then rules can be expressed as

Rule i : if x is Fx
i and y is Fy

i and z is Fz
i

then f i ¼ pix þ qiy þ riz þ si for i ¼ 1; 2

where Fx
i , Fy

i and Fz
i are the fuzzy sets for the inputs x, y and z,

respectively; pi, qi, ri and si are linear parameters in the then-part of
fuzzy if–then rules, and are called consequent parameters. The
architecture of ANFIS with five layers is shown in Fig. 1, and a brief
introduction of the model is as follows.

Layer 1: Each node of this layer generates membership grades of
an input variable. The node output is O1,i given by

O1;i ¼ mFx
i
ðxÞ for i ¼ 1; 2 (2)

O1;i ¼ mFy
i�2
ðyÞ for i ¼ 3; 4 (3)

O1;i ¼ mFz
i�4
ðzÞ for i ¼ 5; 6 (4)

where x, y and z are the crisp inputs to node i, and Fx
i , Fy

i�2 and Fz
i�4

are the linguistic labels characterized by appropriate membership
ugeno fuzzy model with two rules.
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functions mFx
i
, mF

y
i�2

and mFz
i�4

, respectively. The Gaussian
membership functions are increasingly popular for specifying
fuzzy sets as they are nonlinear, smooth and their derivatives are
continuous, it is given by

mFx
i
ðxÞ ¼ exp �

ðx � cx
i Þ

2

2ðdx
i Þ

2

  !
for i ¼ 1; 2 (5)

mFy
i
ðyÞ ¼ exp �

ðy � cy
i Þ

2

2ðdy
i Þ

2

  !
for i ¼ 1; 2 (6)

mFz
i
ðzÞ ¼ exp �

ðy � cz
i Þ

2

2ðdz
i Þ

2

  !
for i ¼ 1; 2 (7)

where dx
i , dy

i , dz
i , cx

i , cy
i and cz

i are the parameters of the membership
functions in the premise part of fuzzy if–then rules that change the
shape of the membership functions with minimum and maximum
equal to 0 and 1, respectively. Parameters in this layer are referred
to as premise parameters.

Layer 2: In this layer, the nodes are fixed nodes. They are labeled
with P, which multiplies the incoming signals and sends the
product out. The outputs of this layer can be represented as

O2;i ¼ wi ¼ mFx
i
ðxÞmFy

i
ðyÞmFz

i
ðzÞ for i ¼ 1; 2 (8)

Each node output represents the firing strength of a rule.
Layer 3: In this layer, the nodes are also fixed nodes, they are

labeled with N. The ith node calculates the ratio of the ith rule’s
firing strength to the sum of all rules’ firing strengths. The outputs
of this layer are given by

O3;i ¼ w̄i ¼
wiP2
j¼1 w j

for i ¼ 1; 2 (9)

which are called normalized firing strengths.
Layer 4: In this layer, the nodes are adaptive nodes. The output

of each node in this layer is computed as

O4;i ¼ w̄i f i ¼ w̄ið pix þ qiy þ riz þ siÞ for i ¼ 1; 2 (10)

where w̄i is the output of layer 3 and fi is a linear function of input
variables.

Layer 5: In this layer, there is only one single fixed node labeled
with S. This node computes the weighted average of the output
signals of the previous layer as

O5;i ¼
X2

i¼1

w̄i f i ¼
P2

i¼1 wi f iP2
i¼1 wi

(11)

It can be seen that there are two adaptive layers in this ANFIS
architecture, namely the layer 1 and the layer 4. Layer 1 has
modifiable premise parameters related to the input membership
function. Layer 4 also has modifiable consequent parameters
pertaining to the first-order polynomial.

The task of the learning algorithm for this architecture is to tune
all the modifiable parameters to make the ANFIS output match the
training data. There are a number of proposals on how to define
these parameters in the literature. The most popular one is the
hybrid learning algorithm which combines the least squares
method and the gradient descent method [30]. The hybrid
algorithm is composed of a forward pass and a backward pass.
In the forward pass, the functional signals go forward till layer 4
and the consequent parameters are identified by the least squares
estimate. In the backward pass, the error rates propagate backward
and the premise parameters are updated by the gradient descent.
2.3. Subtractive clustering

Consider a collection of n data points {x1, x2, . . ., xn} in M

dimensional space. Assume that the data points have been
normalized in each dimension so that their coordinate ranges in
each dimension are equal. Consider each data point as a potential
cluster center and define a measure of the potential of data point xi

as

Pi ¼
Xn

j¼1

e�a xi�x jk k2

(12)

where

a ¼ 4

ra
(13)

ra is a positive constant called radius.
After the potential of every data point has been computed,

select the data point with the highest potential as the first cluster
center. Let x�1 be the location of the first cluster center and P�1 be its
potential value. Then revise the potential of each data point xi by
the formula

Pi( Pi � P�1e�b xi�x�
1k k2

(14)

where

b ¼ 4

r2
b

(15)

To avoid obtaining closely spaced cluster centers, set rb to be
somewhat greater than ra. A good choice is rb = 1.5ra. When the
potential of all data points has been revised, select the data point
with the highest remaining potential as the second cluster center.
Then further reduce the potential of each data point according to
their distance to the second cluster center. In general, after the kth
cluster center has been obtained, revise the potential of each data
point by the formula

Pi( Pi � P�ke�b xi�x�
kk k2

(16)

where x�k is the location of the kth cluster center and P�k is its
potential value. The process of acquiring new cluster center and
revising potentials repeats until the remaining potential of all data
points falls below some fraction of the first cluster center P�1.

Consider a set of c cluster centers fx�1; x�2; . . . ; x�cg in an M

dimensional space. Let the first N dimensions correspond to input
variables and the last M–N dimensions correspond to output
variables. Decompose each vector x�i into two component vectors
y�i and z�i , where y�i contains the first N elements of x�i (i.e., the
coordinates of the cluster center in input space) and z�i contains the
last M–N elements (i.e., the coordinates of the cluster center in
output space).

Consider each cluster center x�i as a fuzzy rule that describes the
system behavior. Given an input vector y, the degree of fulfillment
of rule i is defined as

mi ¼ e�a yi�y�
ik k2

(17)

Compute the output vector z via

z ¼
Pc

i¼1 miz
�
iPc

i¼1 mi

(18)

z�i ¼ Giy þ hi (19)

where Gi is an (M–N) � N constant matrix and hi is a constant
column vector with M–N elements. The equivalent if–then rules



Fig. 2. NIR absorbance data for all thiamphenicol samples in training set.

Fig. 3. The variance explained by the corresponding principal component.
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then become the Takagi-Sugeno type, where the consequent of
each rule is a linear equation in the input variables [31].

3. Experimental

3.1. Apparatus and software

The NIR spectra were measured with a Shimadzu13101
spectrophotometer (Tokyo, Japan) with ISR-3101 integrating
sphere to collect the sample spectra. The apparatus was controlled
by UVPC Personal Spectroscopy Software, which is a commercial
available NIR spectral analysis software package. The microcom-
puter with Inter CORE dual core 2.66 GHz CPU, 2GB DDR3 RAM and
Windows XP operating system was used for data processing. The
PCA-ANFIS was implemented by using the MATLAB software
package (MATLAB version R2006a with fuzzy logic toolbox 2.2.3
and statistics toolbox 5.2). The PCR was performed by using TQ
6.6.1 (Thermo Nicolet, Madison, WI, USA) software package.

3.2. Sample preparation

All the raw material powders include thiamphenicol as active
component and starch as excipient. The average concentration of
thiamphenicol was 70.78% (g/g), and the concentration range of all
the samples was 59.27–83.55% (g/g). All of the standard referenced
concentrations were measured according to the Chinese Pharma-
copoeia method [32], as the reference method: samples were
homogenized, and the amounts of thiamphenicol powder samples
were accurately weighed and grinded, afterwards they were
dissolved in 30 ml of ethanol and added 20 ml of potassium
hydroxide solution (50%). Then the sample solution was heated to
reflux for 4 h, cooled and diluted in 100 ml water. The dilute nitric
acid was used to neutralize, and the more 7.5 ml of dilute nitric
acid was added. Finally, the concentration of thiamphenicol was
determined by potentiometric titration method with a silver glass
electrode and silver nitrate solution (0.1 mol/l) as the titrant. The
result of titration was corrected by blank test. Every 1 ml of
(0.1 mol/l) silver nitrate titrant was equivalent to 17.81 mg of
C12H15CI2NO5S.

3.3. Collection of NIR spectra

The scan wavelength range was from 1100 to 2500 nm (9091 to
4000 cm�1) and the entrance slit of the NIR spectrophotometer
used was 12 nm. Each recorded spectrum was the average of 10
scans and contained absorbance data at wavelength intervals of
1 nm between 1100 and 2500 nm, giving 1401 available wave-
lengths.

The conventional NIR spectra that form the training set are
shown in Fig. 2.

3.4. Evaluation of the performance of the models

The 60 powder samples were randomly divided into two
separate data sets, i.e., the training set included 45 samples and the
test set included 15 samples. The leave-one-out cross-validation
method was used for the model selection criterion. The ‘‘leaving-
one-out’’ method is leaving one sample out and using the rest of
the samples to build the model. Then the model is used to predict
the sample being left out. This step is repeated for every sample in
the training set samples. Root-mean-square-error (RMSE) of cross-
validation is obtained by leave-one-out cross-validation via the set
of training samples, which gives an estimate of the models’
performance. The test set samples are used as an independent set
to calculate the final prediction error. The predictive abilities of
training set and test set of the different models (conventional, SNV,
MSC and the first-derivative spectra) were compared in terms of
the RMSE. The RMSE given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðcp
i � cr

i Þ
2

n

vuut (20)

In Eq. (20) n is the number of samples included in the set being
processed, cp

i is the predicted value for the sample and cr
i is the

value of the standard referenced method for sample.

4. Results and discussion

4.1. Training and optimization of PCA-ANFIS using MSC spectra

4.1.1. Input variable analysis using the PCA method

For the MSC spectra, PCA was performed firstly to generate the
scores and the loadings from the training set. For PCA to work
properly, we subtracted the mean from each of the data
dimensions. The scores were used as the input variables of the
ANFIS instead of original data, and the loadings were applied to
calculate the test set scores. The PCA results were shown in Fig. 3.
As can be seen from this figure, the PCA process of the original data
gave two important principal components because the total
variance percentage of these two components is 95.28%. Thus,
information in the original data would lose little based on these



Fig. 4. The effect of radius value to the RMSE value of PCA-ANFIS models (a)

conventional spectra, (b) SNV spectra, (c) MSC spectra and (d) the first-derivative

spectra.

Fig. 5. Final membership functions for (a) score1 and (b) score2.

Table 1
Consequent parameters for MSC spectra.

Rule i pi qk ri

1 �0.5268 1.4320 0.7972

2 0.1150 0.0410 0.8017

3 0.2119 0.3263 0.7416

4 �0.7065 1.1310 0.1743
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two components. Therefore, PCA was used for reducing the size of
the sample matrix (1401 variables) by retaining the first 2 PC
scores as descriptors.

4.1.2. The calculated results of PCA-ANFIS model

The PCA-ANFIS model was utilized to differentiate the spectral
characteristics as well as to quantify the concentration of each of
the pharmaceutical samples. The hybrid learning algorithm was
used to build the PCA-ANFIS model according to input–output data
patterns. Using training data, including the first 2 PC scores
obtained by PCA as input variables to PCA-ANFIS and concentra-
tions of the standard referenced method as the output variables, a
FIS along with a subtractive clustering was developed for
concentration prediction. The subtractive clustering can automat-
ically determine the number of clusters. It assumes that each data
point is a potential cluster center and calculates a measure of the
likelihood that each data point would define the cluster center,
based on the density of surrounding data points. In this algorithm,
an important parameter is radius. The radius is a scalar between 0
and 1 that specifies a cluster center’s range of influence, assuming
that the data fall within a unit hypercube. Specifying small cluster
radius will usually yield many small clusters in the data, resulting
in many fuzzy rules and vice versa. Satisfactory values for the
radius of each cluster are usually between 0.2 and 0.8.

At the beginning of the PCA-ANFIS model training, varying the
level of parameter radius (from 0.2 to 0.8) will generate a response
of their corresponding RMSE of cross-validation. And the selection
of optimum parameter radius was made with the curve of root-
mean-square-error of cross-validation as shown in Fig. 4. The
minimum RMSE value was expected to occur when the optimal
parameter of PCA-ANFIS model is retained. The radius of 0.70 was
used for each cluster after the parameter had been evaluated,
which led to generation of 4 fuzzy rules. This FIS was then used as
an initial FIS for PCA-ANFIS modeling. PCA-ANFIS finds the best
function mapping the input variables to the output variable. Fig. 5
shows the final membership functions of input variables. The final
four fuzzy if–then rules take the following form:

Rule k : if score1 is F1
k and score2 is F2

k
then f k ¼ pkscore1 þ qkscore2 þ rk

where k = 1, . . ., 4, score1 and score2 are first two PC scores, F1
k and

F2
k are the fuzzy sets with membership functions mF1

k
and mF2

k
,

respectively. pk, qk and rk are consequent parameters pertaining to
the first-order polynomial fk, their values are shown in Table 1.
4.2. PCA-ANFIS using other spectra and evaluation

The PCA was performed on the conventional spectra, SNV and
first-derivative corrected spectra, too. The selected numbers of PC
of conventional spectra, SNV and the first-derivative spectra were
two, three and three, respectively (Table 2). The PCA-ANFIS models
of the conventional spectra, SNV and the first-derivative spectra
were established. The established process was similar to the MSC
model. Using different input parameters, the different PCA-ANFIS
models will be generated. The RMSE was used to evaluate the
fitness of the models. The optimal PCA-ANFIS topology parameter
settings are listed in Table 2. The generated fuzzy rules of
conventional spectra, SNV and the first-derivative spectra are
three, two and four, respectively.

When the adjustable parameter radius of PCA-ANFIS model was
optimized, the optimal PCA-ANFIS had a high ability to predict the



Table 2
Optimized parameters used for construction of PCA-ANFIS models.

Parameter Conventional SNV MSC First-derivative

PCs 2 3 2 3

Amount of variance explained 94.44% 96.18% 95.28% 95.51%

radius 0.60 0.68 0.70 0.72

Fig. 6. The predicted concentrations of MSC pre-processed spectra are plotted

against the standard reference concentrations (PCA-ANFIS).
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concentrations of thiamphenicol samples. The relationship of the
standard reference concentration with each of the predicted ones
of the training set is clearly summarized in Table 3. The goodness of
fit of PCA-ANFIS models based on conventional and pretreated
spectra was compared in terms of the RMSE and R. RMSE measures
the average deviation between the standard reference concentra-
tion and the predicted concentration. Small RMSE value of a model
indicates a better fit of data for that model. The R values indicate a
linear relationship between the standard reference concentration
and the predicted concentration by the model and the higher R
value, the better is the adequacy of the model to describe the data.
As shown in Table 3, the smallest RMSE and higher R occur in the
quantitative prediction by means of optimal PCA-ANFIS set up by
MSC spectra, which shows MSC spectra have the priority over
conventional spectra, SNV spectra and the first-derivative spectra.
Therefore, the PCA-ANFIS model established by MSC spectra is the
best.

To verify the reliability of the constructed models, the trained
PCA-ANFIS models were then used to predict concentrations of
thiamphenicol samples using test set data not used in the training
procedure. These predicted concentrations are compared with
standard reference concentrations to check the PCA-ANFIS model
performance. Concentrations of the test set samples were
accurately predicted with RMSE of 0.9796% for conventional
spectra, 0.5101% for MSC spectra, 0.6896% for SNV spectra and
0.7428% for the first-derivative spectra, respectively. The thiam-
phenicol concentration correlation plots for the optimal PCA-ANFIS
model of MSC spectra are shown in Fig. 6 for the training and test
sets. It can be seen that the predicted concentrations are highly
correlated with the standard reference concentrations, thus the
model of MSC spectra can give better performance.

4.3. Determination by PCR calibration models

In order to stand out advantages of PCA-ANFIS models, the PCR
models were used to make a prediction of the concentration of
compound thiamphenicol powder. PCR has been demonstrated as
Table 3
Statistical parameters of relationship between the standard reference concentrations a

Model Spectra Set 

PCA-ANFIS Conventional Training set 

Test set 

SNV Training set 

Test set 

MSC Training set 

Test set 

First-derivative Training set 

Test set 

PCR Conventional Training set 

Test set 

SNV Training set 

Test set 

MSC Training set 

Test set 

First-derivative Training set 

Test set 
a useful technique to quantitative analysis by NIR spectra with
increased matrix complexity. These models generated by PCR used
the same data sets and the same number of PCs as in the PCA-ANFIS
models. We established the PCR models of conventional spectra,
SNV, MSC and first-derivative spectra to compare them with PCA-
ANFIS models. The RMSE value on both the training set and the test
set was used for the model selection criterion. The thiamphenicol
concentration correlation plots for the optimal PCR model of MSC
spectra are shown in Fig. 7 for the training and test sets. A summary
of the comparison of PCA-ANFIS models with PCR models is given
in Table 3. As can be seen, the PCA-ANFIS models achieve better
prediction performance than PCR models. The results indicate that
the PCA-ANFIS models have more advantages than the PCR models.

4.4. Four-fold cross-validation

To validate the performance of calibration models further, the
four-fold cross-validation is applied. These models generated by
ANFIS and PCR used the same data sets. The 60 samples were
randomly divided into four subsets, each of which contained 15
samples. The four calibration models were obtained, each time one
of the four subsets was assigned to a test set and the other three
subsets were allocated to a training set. The overall performance
nd predicted ones of the best PCA-ANFIS models.

R RMSE (%) Four-fold cross-validation

R RMSE (%)

0.9911 0.9145 0.9900 0.9005

0.9920 0.9796 0.9911 1.0087

0.9949 0.6961 0.9949 0.6872

0.9974 0.6896 0.9949 0.6359

0.9958 0.6426 0.9952 0.6700

0.9975 0.5101 0.9961 0.5422

0.9945 0.7217 0.9939 0.7409

0.9938 0.7428 0.9936 0.8015

0.9698 1.6738 0.9799 1.3412

0.9775 1.4682 0.9696 1.6085

0.9799 1.3708 0.9892 0.9682

0.9828 1.2432 0.9856 1.0055

0.9909 0.9237 0.9908 0.9279

0.9960 0.7231 0.9885 0.9130

0.9719 1.6235 0.9718 1.5462

0.9865 1.2295 0.9777 1.5993



Fig. 7. The predicted concentrations of MSC pre-processed spectra are plotted

against the standard reference concentrations (PCR).
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was calculated as the average performance of the four models over
the corresponding test partitions of the data. The performance of
the models was assessed using RMSE and the correlation
coefficient R. The average results achieved via four-fold cross-
validation were also presented in Table 3. From the calculated
results in the table, it can be concluded that ANFIS has better
performance than the PCR models.

5. Conclusion

The purpose of this study was to investigate the application of
PCA-ANFIS and NIR spectroscopy in the nondestructive prediction
of pharmaceutical samples. ANFIS is a powerful fuzzy logic neural
network, which provides a method for fuzzy modeling to learn
information about the data set that best allow the associated fuzzy
inference system to trace the given input–output data. The PCA
was presented and applied to reduce and orthogonalize the input
variables of an ANFIS model implemented for thiamphenicol
sample prediction. It has been demonstrated that the proposed
algorithm is a simple and effective means for the nondestructive
determination of thiamphenicol samples by near-infrared (NIR)
spectroscopy. The results show that the PCA-ANFIS models of
spectra transited by SNV, MSC and the first-derivative correction
give more acceptable results than conventional spectral model,
and the best one is of MSC spectra.
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