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Abstract – The anisotropy of elastic waves propagating in two-dimension phononic crystals with
cubic crystal material was theoretically investigated in the long wavelength limit. The anisotropy
can be tuned efficiently by either rotating the crystalline orientation of the material or changing
the filling fraction. It can even disappear at a given orientation and filling fraction. The pure
vibration mode direction and the pure propagation mode direction can be efficiently tuned to a
desired direction deviating from the symmetric plane of the phononic crystal lattice. These results
will be useful in manipulating the anisotropy of a homogenized composite and dealing with a PC
with anisotropic material.

Copyright c© EPLA, 2012

Introduction. – Elastic waves propagating in an
anisotropic medium are much more complex than those
in an isotropic medium [1–10]. In order to calculate
the elastic constants the pure vibration mode directions
(PVMDs) of the crystal should be carefully identified.
In addition, the pure propagation mode directions
(PPMDs) of the crystal need also to be identified for
designing the acoustoelectronic and acousto-optic devices
because the energy flow vectors are not always collinear
with the wave propagation vectors. Because of these
directional dependent properties, the phononic crystal
(PC) composed of anisotropic material has attracted
attention in recent years [11–15]. It was shown that the
band gaps can be tuned by rotating the orientation of
anisotropic filler material and mode coupling may occur
due to the anisotropy of host material.
At low frequencies, where the dispersion relation is

linear, the PC can be equivalent to be a homogenized
medium [16–26]. In this frequency range, the PC may have
numerous applications in new acoustic refractive devices,
such as acoustic lenses [19–21]. Recently, the anisotropy of
the effective velocities of the elastic waves in the PC with
isotropic material has been studied [24–26]. It has been
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pointed that the anisotropy of the effective velocities can
be influenced by the filling fraction and the structure of
the PC lattice. However, to our knowledge, the anisotropy
of the homogenized PC composed of anisotropic material
has not been studied up to now. Due to the directional
dependent properties, it is hoped that the anisotropy
of the homogenized PC can be tuned by the material
anisotropy.
In this paper the anisotropy of two-dimension (2D)

square lattice PCs with cubic crystal material was theoret-
ically investigated in the long wavelength limit. Effective
velocities, polarization vectors and power flow angles of
the homogenized plane elastic waves were analyzed using
the plane wave expansion (PWE) method. It is shown
that these properties can be tuned efficiently by either
rotating the crystalline orientation or changing the filling
fraction. The anisotropy can be magnified or even degen-
erated to isotropy at the given orientation and the filling
fraction. Moreover, the PVMD and PPMD of the homoge-
nized composite can be efficiently tuned to a desired direc-
tion deviating from symmetric planes of the PC lattice,
which cannot be realized for PCs with isotropic material.
These results will be useful in manipulating the anisotropy
of a homogenized composite and dealing with a PC with
anisotropic material.
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Fig. 1: The rotation angle of the cubic crystal material
orientation and the first Brillouin zone. The inset indicates the
material coordinate system x′y′z′ along the main axes of the
cubic crystal material.

Formulation. – The PC investigated in this paper
is composed of square lattice isotropic epoxy cylinders
(A) embedded in the single crystalline silicon (B) (cubic
crystal) as shown in fig. 1. The lattice constant is a,
and the radius of the cylinder is r. The PC coordinate
system xyz and the material coordinate system x′y′z′

are set with the z-axis and the z′-axis parallel to the
cylinder axis as shown in fig. 1. When rotating the
main crystalline axes of the material about the z-axis
with angle α, the elastic matrix C referred to the PC
coordinate system can be obtained by the rotational
transformation C=M×C′×MT, where C′ is the elastic
matrix referred to the material coordinate system. M is
the Bond stress transformation matrix derived from the
rotation transformation matrix [6].
For 2D PCs with the square lattice composed of cubic

crystal material, a pure out-plane (SV) mode and two
mixed in-plane modes, i.e. the quasilongitude (Quasi-L)
mode and the quasishear (Quasi-SH) mode, propagate in
the plane of periodicity [11,13,24]. Because the SV mode
is little anisotropic and is not influenced by the rotation
of the crystalline orientation of the material, only mixed
modes were considered.
The general eigenvalue problem for calculating the

effective velocities and polarized vectors of the mixed
modes was derived by the PWE method in the long
wavelength limit following refs. [22–24]. The displacement
vector u(r) = (ux(r), uy(r)) can be expanded as

u(r)≈ u0eik·r+
∑

G�=0
uk+Ge

iG·r, (1)

where r= (x, y) is the position vector, u0 = (ux0,uy0) is
the G= 0 term of the Fourier coefficients of the displace-
ment vector, k= (kx,ky) is the Bloch vector and G=
(Gx,Gy) is the reciprocal lattice vector. If the wavelength
is much larger than the lattice constant, the inhomoge-
neous medium behaves like a homogeneous one and the
Bloch waves are reduced to plane waves with polarization
vector u0 [22,23]. In order to directly obtain the polar-
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Fig. 2: The anisotropy ratio ∆= (cmaxe − cmine )/cmaxe (where
ce is the effective velocity of the Quasi-L mode or Quasi-SH
mode) of the quasilongitude mode and quasishear mode for
the rotation angle α= 0◦, 15◦, 30◦, 45◦, with filling fraction f
changing from 0 to π/4.

ization vector, an eigenvalue problem different from the
references was derived by eliminating uk+G as

k2Su0 = ω
2R0u0, (2)

where both S and R0 are second-order symmetric matri-
ces. The larger and smaller eigenvalues correspond to the
effective velocity of the Quasi-L mode and Quasi-SH mode,
respectively. And the corresponding two eigenvectors are
the polarization vectors of the Quasi-L mode and Quasi-
SH mode, respectively.
In order to guarantee convergence 225 plane waves were

used in the numerical calculation. Parameters of mate-
rials are ρSi = 2331 kg/m

3, C ′11Si = 165.78GPa, C
′
12Si =

63.94GPa, C ′44Si = 79.62GPa, ρepoxy = 1142 kg/m
3,

C ′11epoxy = 7.54GPa, C ′44epoxy = 1.48GPa [27]. Due to
the symmetry of the PC lattice and the material, α is
changed from 0◦ to 45◦. From the calculation, it is found
that the z -axis which is the fourfold axis of both the PC
square lattice and the cubic crystal material is also the
fourfold axis of the composite’s slowness curve, so only
the propagation direction from 0◦ to 90◦ was considered
here, i.e. from the ΓX direction to the ΓY direction in
the first Brillouin zone as shown in fig. 1.

Velocities anisotropy. – The anisotropy of the effec-
tive velocities is characterized by the anisotropy ratio
∆= (cmaxe − cmine )/cmaxe , where ce is the effective velocity
of Quasi-L mode or Quasi-SH mode [24]. Figure 2 gives
the anisotropy ratio of the Quasi-L mode and the Quasi-
SH mode for the rotation angle α= 0◦, 15◦, 30◦, 45◦, with
filling fraction f changing from 0 to π/4. It can be seen
that the anisotropy of the Quasi-SH mode is larger than
that of the Quasi-L mode. Compared with f = 0, for each
nonzero filling fraction, anisotropy ratios of both modes
increase with the rotation. When the [100] crystalline axis
of the material is parallel to the [10] axis of the PC lattice
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Fig. 3: Deviation angles with different rotation angles and
different propagation directions: f = 0 (a), f = 0.247 (b), f =
0.7 (c), f = π/4 (d). The inset in (b) plots the deviation angle
when f = 0.247 and α= 0◦, which shows that the effective
velocities are nearly isotropic.

(α= 0◦), the anisotropy ratios of both modes are lowest.
When the [100] axis of the material is parallel to the [11]
axis of the PC lattice (α= 45◦), the anisotropy ratios are
largest.
From fig. 2 it can also be noted that the effect of

the filling fraction on the anisotropy ratio is different for
different rotation angles. The most striking feature is that
there is a critical value of the filling fraction fcr = 0.247
for which the minimum anisotropy ratio of both modes
is nearly zero when α= 0◦. But this is not true for other
rotation angles. It is worth noting that the anisotropy can
be tuned in a large region by modifying the filling fraction
and the crystalline orientation. For the Quasi-SH mode,
the anisotropy ratio varies from 0 to above 52%, for the
Quasi-L mode, it varies from 0 to above 17%. Moreover,
when f = fcr and α= 0

◦, both modes’ anisotropy ratios
approach zero, the effective velocities are nearly isotropy.

Deviation angle and PVMD. – Because of the
orthogonality of the polarization vectors of the Quasi-L
mode and the Quasi-SH mode, only the polarization of the
Quasi-L mode was considered here. The deviation angle φ
which is the deviation of the polarization of the Quasi-
L mode from the propagation direction was obtained by
φ= arcsin((Iu× Ik)3), where Iu is the unit polarization
vector, Ik is unit propagation vector, the subscript 3
indicates the z-direction component. When φ is zero, the
propagation direction is PVMD.
Figure 3 shows the deviation angles for different rotation

angle α as a function of the propagation direction with
filling fraction f = 0, 0.247, 0.7, π/4, respectively. For
each nonzero f the maximum value of the deviation angle

increases with α increasing as shown in fig. 3(b), (c), (d)
which is different from the case f = 0. When f = 0.247 and
α= 0◦, the deviation angle approaches zero, as shown in
fig. 3(b). Again, it is proved that the effective velocities are
nearly isotropic as the inset in fig. 3(b). The maximum
deviation angle can reach above 15◦ when f = 0.7 and
α= 45◦ as in fig. 3(c). Figure 3(d) shows that, when f =
π/4, the deviation angle will be influenced only a little by
the rotation angle. These behaviours lead us to conclude
that the polarization vector will be changed by changing
the crystalline orientation of the material or the filling
fraction.
There are two kinds of PVMDs when the propagation

direction changes from 0◦ to 90◦. For simplification, the
PVMDs analyzed here were chosen as follows: when the
propagation direction changes from 0◦ to the PVMD,
the deviation angle changes from negative to zero. It can
be seen that when f = 0 and 0.247, PVMDs rotate from
45◦ to 90◦ monotonously with α which is different from
the case when f = 0.7 and π/4. For nonzero f, PVMDs
will be influenced by both the periodic structure and the
anisotropy of the anisotropic material. It has been shown
that there is a critical value of the filling fraction fcr
for which the homogenized composite is isotropic when
α= 0◦. When f < fcr, the material anisotropy plays the
main role in the changes of the PVMDs; the PVMDs can
follow the rotation of the material, and change from 45◦

to 90◦. However, when f > fcr, the effects of the periodic
structure play the main role; as a result the PVMDs will
be influenced weakly by the rotation. When α= 0◦ or 45◦

as the [100] crystalline axis of the material is collinear
with the [10] or [11] axis of the PC lattice, the PVMDs
are also in the direction of [10] or [11] axis and will not
be influenced by the filling fraction. But when the [100]
axis of the material deviates from the [10] or [11] axis as
α= 15◦ and 30◦, the PVMDs will be tuned by the filling
fraction. It is concluded that the PVMDs can be tuned
efficiently by changing the orientation of the material or
the filling fraction. The PVMDs can deviate from the
symmetric direction of the PC lattice and the material
simultaneously.

Power flow angle and PPMD. – The unit energy
flux vector Ie is coincident with the unit normal vector N
of the slowness curve for no dissipation medium [6–8]. The
power flow angle can be got by θ= arcsin((N× Ik)3), N
can be derived from the slowness curve as in ref. [8]. When
θ= 0◦ the propagation direction is the PPMD. Power flow
angles for f = 0, 0.247, 0.7 and π/4 are shown in fig. 4. It
is noted that for each filling fraction the maximum power
flow angle of the Quasi-SH mode is larger than that of
the Quasi-L mode. This is due to the fact that the Quasi-
SH mode has larger anisotropy than the Quasi-L mode
as shown above. In addition, the zero power flow angles of
the Quasi-L mode and the Quasi-SH mode are in the same
propagation directions. Furthermore, for both modes the
PPMDs are coincident with the PVMDs as compared with
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Fig. 4: The power flow angles vs. different rotation angles and
propagation directions for the Quasi-L mode and the Quasi-SH
mode, respectively, with f = 0, 0.247, 0.7 and π/4.

fig. 3. Generally the PPMD is not always coincident with
the PVMD in the anisotropic material for the Quasi-SH
mode [5,7]. For the Quasi-L mode, however, the PPMD is
collinear with PVMD [5,7]. Due to the coincidence of the
PPMD between the Quasi-SH and the Quasi-L mode here,
the PPMD is also collinear with the PVMD for the Quasi-
SH mode. Thus, the PPMD for the two modes will behave
in the same way as the PVMD for different rotation angles
α and different filling fractions f.

Conclusion. – In summary, the anisotropy of mixed
modes in phononic crystals with square lattice epoxy cylin-
ders embedded in single crystalline silicon were theoreti-
cally investigated by using the PWE method in the long
wavelength limit. It is found that: by changing the filling

fraction and the crystalline orientation of the material,
1) the anisotropy of effective velocities can be tuned in a
large range; it can even approach to isotropy for the given
filling fraction and the crystalline orientation; 2) the polar-
ization vector and the energy flow vector (or the deviation
angle and the power flow angle) can be changed; 3) the
pure vibration mode direction and the pure propagation
mode direction can be tuned to deviate simultaneously
from the symmetric direction of the PC lattice and the
material.
Through the theoretical investigation, an effective

method was provided to obtain the desired anisotropy of
the homogenized composite which is useful in designing
acoustoelectronic and acousto-optic devices. These results
can also propose the guidance for the calculation of the
effective elastic constants of the PC with anisotropic
material, in which case the pure vibration mode direction
and pure propagation mode direction may not be collinear
with the symmetric direction of the Brillouin zone.

∗ ∗ ∗

We would like to extend our thanks to Dr Chunyin
Qiu from Wuhan University in China for his valuable
comments on our present studies. And the work was
funded by the Natural Science Foundation of China
(60871043, 60971025 and 11034007), the National High
Technology Research and Development Program of China
(Grant No. 2012AA040503) and Key Knowledge Innova-
tion Project of The Chinese Academy of Sciences (KJCX2-
YW-H18).

REFERENCES

[1] Borgnis F., Phys. Rev., 98 (1955) 1000.
[2] Waterman P. C., Phys. Rev., 113 (1959) 1240.
[3] Brugger K., J. Appl. Phys., 36 (1965) 759.
[4] Portigal D. and Burstein E., Phys. Rev., 170 (1968)
673.

[5] Neighboure J. R., J. Appl. Phys., 44 (1973) 4816.
[6] Auld B. A., Acoustic Fields and Waves in Solids (Wiley
Interscience, New York) 1973.

[7] Ditri J. J., Appl. Phys. Lett., 64 (1994) 701.
[8] Rosenbaum J. F., Bulk Acoustic Waves: Theory and
Devices (Artech House, Boston) 2000.

[9] Imamura K. and Tamura S., Phys. Rev. B, 70 (2004)
174308.

[10] Wang L., J. Acoust. Soc. Am, 127 (2010) 746.
[11] Hou Z., Fu X. and Liu Y., Phys. Lett. A, 317 (2003)

127.
[12] Achaoui Y., Khelif A., Benchabane S. and Laude

V., J. Phys. D: Appl. Phys., 43 (2010) 185401.
[13] Zhan Z. and Wei P., Acta Mech. Solida Sin., 23 (2010)

181.
[14] Lin S. C. S. and Huang T. J., Phys. Rev. B, 83 (2011)

174303.
[15] Yao Y., Wu F., Hou Z. and Xin Z., Ultrasonics, 51

(2011) 602.

36001-p4



Anisotropy of homogenized phononic crystals with anisotropic material

[16] Berryman J. G., Appl. Phys. Lett., 35 (1979) 856.
[17] Berryman J. G., J. Acoust. Soc. Am., 68 (1980)

1809.
[18] Berryman J. G., J. Acoust. Soc. Am., 68 (1980) 1820.
[19] Halevi P., Krokhin A. and Arriaga J., Appl. Phys.

Lett., 75 (1999) 2725.
[20] Cervera F., Sanchis L., Sanchez-Perez J.,

Martinez-Sala R., Rubio C., Meseguer F., Lopez

C., Caballero D. and Sánchez-Dehesa J., Phys. Rev.
Lett., 88 (2001) 23902.

[21] Garcia N., Nieto-Vesperinas M., Ponizovskaya E.
and Torres M., Phys. Rev. E, 67 (2003) 046606.

[22] Krokhin A., Halevi P. and Arriaga J., Phys. Rev. B,
65 (2002) 115208.

[23] Krokhin A., Arriaga J. and Gumen L., Phys. Rev.
Lett., 91 (2003) 264302.

[24] Ni Q. and Cheng J., Phys. Rev. B, 72 (2005) 014305.
[25] Ni Q. and Cheng J., J. Appl. Phys., 101 (2007)

073515.
[26] Zhou X. W., Zou X. Y., Wang T. H. and Cheng J.

C., Ultrasonics, 50 (2010) 577.
[27] Vasseur J., Deymier P., Djafari-Rouhani B.,

Pennec Y. and Hladky-Hennion A., Phys. Rev. B, 77
(2008) 085415.

36001-p5


