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Zhang Y J et al. [Zhang Y J, Zhang Z D, Zhu L Z and Xuan L 2011 Liquid Cryst. 38 355] investigated the

effects of finite polar anchoring on the azimuthal anchoring energy at a grooved interface, in which polar anchoring

was isotropic in the local tangent plane of the surface. In this paper, we investigate the effects of both isotropic and

anisotropic polar anchoring on the surface anchoring energy in the frame of Fukuda et al.’s theory. The results show

that anisotropic polar anchoring strengthens the azimuthal anchoring of grooved surfaces. In the one-elastic-constant

approximation (K11 = K22 = K33 = K), the surface-groove-induced azimuthal anchoring energy is entirely consistent

with the result of Faetti, and it reduces to the original result of Berreman with an increase in polar anchoring. Moreover,

the contribution of the surface-like elastic term to the Rapini–Papoular anchoring energy is zero.

Keywords: azimuthal anchoring energy, surface grooves, anchoring isotropy, anchoring anisotropy
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1. Introduction

Surface anchoring of nematic liquid crystal (LC)

is one of the most important properties of LCs,

mainly because of its relevance to practical applica-

tions, including main current displays[1−3] and vari-

ous non-display technologies, such as LC spatial light

modulators.[4,5] A property of nematic LC is that the

distribution of the director in the bulk of an LC slab

is affected by the properly treated substrate surface,

as well as by externally applied fields, such as elec-

tric and magnetic fields. The easiest way to achieve

an LC alignment along the direction parallel to the

surface is to rub the surface of a polymer layer in

that direction, by which the smectic LC,[3,6] as well as

the nematic LC, is successfully anchored. There are

two underlying mechanisms of anchoring on rubbed

surfaces. One is the inter-molecular interaction be-

tween the LC molecules and the polymer chains con-

stituting the surface,[7−10] while the other is the ef-

fect of long-range elastic distortion induced by surface

grooves or scratches created in the rubbing process.

For the past decade, interest in the latter mechanism

has been growing, since nanotechnology has rapidly

developed and has made it possible to tailor micro-

scopically grooved surfaces to realize various anchor-

ing properties.[11−20]

The first theoretical studies on the contribution

of elastic origin to the surface anchoring of an NLC in

the presence of a nonflat surface were carried out by

Berreman.[21] In his analysis, he considered a rubbed

surface described by a sinusoidal wave with wave num-

ber q = 2π/λ and amplitude A, where λ is the spa-

tial periodicity of the surface. Under the assumption

of the strong anchoring condition, i.e. the director

n, a unit vector describing the local orientation of

a nematic LC, at the surface is always parallel to

it, small amplitude limit (Aq ≪ 1), and one-elastic-

constant approximation (K11 = K22 = K33 = K), the

surface azimuthal anchoring energy is proportional to

sin2 φ (φ being the angle between the director at in-

finity and the direction of the surface grooves), and
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it varies strongly with amplitude A and wave number

q. Since Berreman’s model is simple enough, it has

served as a starting point for numerous subsequent

theories,[22−31] as well as experimental studies[32−34]

in this field. In particular, Fukuda et al.[29] re-

examined the theoretical treatment of Berreman’s

model for the surface anchoring induced by grooves

with infinite polar anchoring (strong anchoring) and

argued that Berreman’s assumption of negligibly small

azimuthal distortion of the nematic is not valid. They

showed that Berreman’s model, considering azimuthal

distortion, yields a surface anchoring energy propor-

tional to sin4 φ and implies that the surface grooves

alone cannot contribute to the surface anchoring co-

efficient in the usual Rapini–Papoular sense. Further-

more, they considered the contribution of surface-like

elasticity characterized by K24 and showed that the

surface-like elastic term is a non-zero contribution to

the Rapini–Papoular anchoring energy.[30,31]

In addition, Faetti[22] and Zhang et al.[28] investi-

gated the effects of finite polar anchoring at a grooved

interface on the azimuthal anchoring energy in the

frame of Berreman’s theory and Fukuda et al.’s the-

ory, respectively. However, the polar anchoring they

assumed was completely isotropic in the local tangent

plane of the surface. But for the grooved surface, the

rubbing procedure leads to anisotropic surface topol-

ogy and anisotropic interaction between LC molecules

and the oriented polymer chains on the surface.[8−10]

In this paper, extending the work of Fukuda and

Yan-Jun Zhang et al., we are going to investigate the

effects of not only the isotropic anchoring of a nematic

LC with the substrate (polar anchoring), but also the

anisotropic component of planar surface anchoring[10]

on surface azimuthal anchoring energy.

2. Theoretical results

The Frank elastic energy density of a nematic LC

can be described in terms of n as[1]

fel =
1

2
[K11(∇ · n)2 +K22(n · ∇ × n)2

+K33(n×∇× n)2]

− 1

2
Ks∇ · [n(∇ · n) + n× (∇× n)], (1)

where Ks is the surface-like elastic constant. When

the distortion of the nematic from the uniform align-

ment (we take the x direction to be along this aligned

director) is small enough,[29] the director n can be

written as

n = (
√
1− n2

y − n2
z, ny, nz) ≈ ( 1, ny, nz), (2)

where ny and nz are small quantities. The Frank elas-

tic energy density up to quadratic order in ny and nz

reads

Fel =
1

2

∫
{K11(∂yny + ∂znz)

2 +K22(∂ynz − ∂zny)
2

+K33[(∂xny)
2 + (∂xnz)

2]

− 2Ks[(∂yny)(∂znz)− (∂ynz)(∂zny)]}dr, (3)

where the last term amounts to surface-like elasticity.

Here, we consider a surface groove whose shape

can be described by

z = ς(x, y) = A sin[q(x sinφ+ y cosφ)], (4)

where A and q have been defined above, and φ de-

scribes the angle between the groove direction and

the x axis (see Fig. 1). We assume that Aq ≪ 1

and a nematic LC is filled in the semi-infinite region

z > ς(x, y). We further assume that the director at

the surface tends to lie in the direction tangential to

it as in Berreman’s theory, and the preferred direction

on the surface is along the grooves.

z

x

y λ

Α

v

t2

t1

ϕ

Fig. 1. Schematic representation of a sinusoidal groove

surface with amplitude A and spatial periodicity λ. Here,

φ is the angle between the x axis and the direction of the

surface grooves, t1 is the unit vector along the grooves, v

denotes the local unit vector perpendicular to the surface,

and t2 = v × t1.

From Appendix A, the finite anchoring energy

per unit area, taking into account both the direct

anisotropic and isotropic interactions between the ne-

matic LC molecules and the oriented polymer chains

on the substrate surface, can be expressed by

fs = W1(n · t1)2 +W3(n · v)2, (5)

where n is the nematic director at the surface, t1 is the

unit vector along the grooves, v denotes the local unit

vector perpendicular to the surface (see Fig. 1), W1 is
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the equivalent anisotropic anchoring strength coeffi-

cient related to director deviation in the local tangent

plane from the limiting surface, and W3 is the equiva-

lent isotropic anchoring strength coefficient related to

director deviation from the direction perpendicular to

the surface. The finite anchoring energy of the surface

is

Fs =

∫
W1(cosφ− sinφny)

2dS

+

∫
W3{nz −Aq sinφ cos[q(x sinφ

+ y cosφ)]}2dS. (6)

Using the full variational principle for Fel+Fs, we

can derive the equilibrium conditions as follows:

−K11∂y(∂yny + ∂znz)

+K22∂z(∂ynz − ∂zny)−K33∂
2
xny = 0, (7)

−K11∂z(∂yny + ∂znz)

−K22∂y(∂ynz − ∂zny)−K33∂
2
xnz = 0, (8)

together with the condition in the surface (z = 0):

ny|z=0 = 0, (9)

K11(∂yny + ∂znz)−Ks∂yny

= 2W3{nz −Aq sinφ cos[q(x sinφ+ y cosφ)]}, (10)

and with the ultimate conditions:

ny|z=+∞ = 0, nz|z=+∞ = 0. (11)

Equation (9) has been proposed by Wolff et al.[35]

as an imposed boundary condition in the strong an-

choring case, which induces the surface couple stress

normal to the surface, while it is a natural result of the

weak anchoring condition we considered. The details

are given in Appendix B.

Using the general solutions of Eqs. (7) and (8)

given by Wolff et al.,[35] we derive the following so-

lutions consistent with the boundary conditions (9),

(10), and (11) as follows:

nz = a1 cos[q(x sinφ+ y cosφ)] e−qzg2(φ)

+ a2 cos[q(x sinφ+ y cosφ)] e−qzg1(φ), (12)

ny = d1 sin[q(x sinφ+ y cosφ)] e−qzg2(φ)

+ d2 sin[q(x sinφ+ y cosφ)] e−qzg1(φ), (13)

where

a1 =
−Aq sinφ cos2 φ/(g1(φ)g2(φ)− cos2 φ)

1 + χ(φ)
, (14)

a2 = −g1(φ)g2(φ)

cos2 φ
a1, (15)

d1 =
g2(φ)

cosφ
a1, (16)

d2 = −g2(φ)

cosφ
a1, (17)

with

χ(φ) =
qK33

2W3

(
g2(φ) sin

2 φ

g1(φ)g2(φ)− cos2 φ

)
, (18)

gi(φ) =

√
cos2 φ+ (K33/Kii) sin

2 φ (i = 1, 2). (19)

Now, the surface couple stress normal to the surface

is[35]

∂g

∂ny,z

∣∣∣∣
z=0

= Ks∂ynz −K22(∂ynz − ∂zny)

+ 2W1 sinφ cosφ

= qK22d1 sin[q(x sinφ+ y cosφ)]

× [g1(φ)− g2(φ)]− (Ks −K22)

× q(a1 + a2) cosφ sin[q(x sinφ+ y cosφ)]

+ 2W1 sinφ cosφ, (20)

where g = fel + fs.

Substituting Eqs. (12) and (13) into expression

Fel + Fs, after some calculations, we can obtain the

total energy per unit surface area at angle φ, i.e.

Fsur(φ). The surface azimuthal anchoring energy

wa(φ), which is defined by Fsur(φ)− Fsur(0), is

wa(φ) =

[ 1
4K33A

2q3g2(φ) sin
4 φ

g1(φ)g2(φ)− cos2 φ

+
1

2
W3A

2q2 sin2 φχ2(φ)

]
× 1

[1 + χ(φ)]2
−W1 sin

2 φ, (21)

in which the last term −W1 sin
2 φ is not the effect

of the surface groove, and the surface-groove-induced

azimuthal anchoring energy is

wg(φ) =

[ 1
4K33A

2q3g2(φ) sin
4 φ

g1(φ)g2(φ)− cos2 φ

+
1

2
W3A

2q2 sin2 φχ2(φ)

]
× 1

[1 + χ(φ)]2
. (22)

3. Discussion

The anchoring energy due to the direct interac-

tion of the LC with the substrate can be considered

to be strong when qK33/(2W3) ≪ 1. From Eqs. (14)–

(17), we can obtain

a1 = − Aq sinφ cos2 φ

g1(φ)g2(φ)− cos2 φ
, a2 = −g1(φ)g2(φ)

cos2 φ
a1,
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d1 =
g2(φ)

cosφ
a1, d2 = −g2(φ)

cosφ
a1, (23)

nz = − Aq sinφ cos2 φ

g1(φ)g2(φ)− cos2 φ
cos[q(x sinφ+ y cosφ)]

×
[
e−qzg2(φ) − g1(φ)g2(φ)

cos2 φ
e−qzg1(φ)

]
, (24)

ny = − Aq sinφ cosφg2(φ)

g1(φ)g2(φ)− cos2 φ
sin[q(x sinφ+ y cosφ)]

× [ e−qzg2(φ) − e−qzg1(φ)]. (25)

The surface-groove-induced azimuthal anchoring en-

ergy per unit surface area with strong polar anchoring

can be obtained by Eq. (22) as

wg(φ)

=
1

4
K33A

2q3 sin4 φg2(φ)/(g1(φ)g2(φ)− cos2 φ).(26)

In the one-elastic-constant approximation, that is

K11 = K22 = K33 = K, equations (24)–(26) reduce to

nz = Aq sinφ cos[q(x sinφ+ y cosφ)] e−qz, (27)

ny = 0, (28)

wg(φ) =
1

4
KA2q3 sin2 φ. (29)

Equations (27)–(29) are consistent with the original

results given by Berreman.[21]

In the one-elastic-constant approximation, that

is K11 = K22 = K33 = K and finite anchoring case,

equation (22) reduces to

wg(φ)

=

[(
1

4
KA2q3 +

1

2
W3A

2q2χ2
0

)/
(1 + χ0)

2

]
sin2 φ,(30)

where χ0 = qK/(2W3) is the value of χ(φ) under the

condition of K11 = K22 = K33 = K. Equation (30) is

the result given by Faetti.[22] We find that the surface-

groove-induced azimuthal anchoring energy is propor-

tional to sin2 φ and independent of the surface-like

elastic constant Ks, which is different from the results

provided by Fukuda et al.[30]

To see the effect of finite anchoring en-

ergy, we derive the rescaled anchoring energy

wg(φ)/(KA2q3/4) under one-constant approximation

(K11 = K22 = K33 = K):

wg(φ)/(KA2q3/4) =
1

1 + qK/(2W3)
sin2 φ. (31)

For comparison, we plot in Fig. 2 Zhang et al.’s

rescaled anchoring energy for Ks = 0[28] and ours

(Eq. (31)) for various values of qK/(2W3). It is shown

that with strong polar anchoring (qK/(2W3) ≪ 1),

our result is the original result of Berreman, i.e.

wg(φ) ∝ sin2 φ, while Zhang et al.’s anchoring energy

is the result of Fukuda et al.,[29] i.e., wg(φ) ∝ sin4 φ.

With the weak anchoring strength decreasing (we

choose qK/(2W3) = 1 and qK/(2W3) = 3), and our

result tends to be consistent with the result of Zhang

et al. for Ks = 0. Furthermore, we can see that with

the polar anchoring strength decreasing, the rescaled

anchoring energy decreases more and more.

0
0

0.2

0.4

0.6

0.8

1.0

qK/(2W3)=1 (strong anchoring )

qK/(2W3)=1

qK/(2W3)=3

w
g
↼ϕ
↽/

(K
A

2
q
3
/

↽

−π/2 −π/4 π/4 π/2
ϕ

Fig. 2. Our rescaled anchoring energy (solid line) and

that of Yan-Jun Zhang (dashed line) for Ks = 0 as a func-

tion of φ, assuming K11 = K22 = K33 = K.

D
w

g
↼ϕ
↽/
↼K
A

2
q
3
/

↽

0

0.05

0.10

0.15

0.20

0.25

0−π/2 −π/4 π/4 π/2
ϕ

qK/(2W3)=1 (strong anchoring )

qK/(2W3)=1

qK/(2W3)=3

Fig. 3. The differences in rescaled anchoring energy be-

tween ours and Zhang et al.’s, each as a function of φ

for various values of qK/(2W3), under the assumption of

K11 = K22 = K33 = K.

To see the effects of anisotropic anchoring on az-

imuthal anchoring energy clearly, we plot in Fig. 3 and

Fig. 4 the difference in rescaled anchoring energy be-

tween ours (using superscript aniso) and Zhang et al.’s

(using superscript iso), i.e., ∆wg(φ)/(KA2q3/4) =

wg(φ)
(aniso)/(KA2q3/4) − wg(φ)

(iso)/(KA2q3/4). In

Fig. 3, it is shown that the difference is always pos-

itive, which means that our anchoring energy is al-

ways higher than Zhang et al.’s. In other words, the

anisotropic anchoring strengthens the azimuthal an-

choring energy of grooved surfaces. In addition, Fig. 4

shows that for a certain φ (φ ̸= 0, π/2), the difference

increases with increasing polar anchoring strength.

In fact, our theory confirms that for the anisotropic
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grooves induced by polymer stretching along the rub-

bing direction (stretch-induced anisotropy and me-

chanical damage-induced grooves) in industrial pro-

duction, the anchoring effects are strengthened.

D
w

g
↼ϕ
↽/
↼K
A

2
q
3
/

↽

0 1 2 3 4
0

0.05

0.10

0.15

0.20

0.25

qK/↼W3 ↽

ϕ=π/4

ϕ=π/6

ϕ=π/12

Fig. 4. The differences in rescaled anchoring energy

between ours and Zhang et al.’s, each as a function of

qK/(2W3) for various values of φ under the assumption

of K11 = K22 = K33 = K.

In order to introduce the Rapini–Papoular[36] an-

choring strength W on the easy axis φ = 0, defined by

wg = 1
2Wφ2, we derive the second derivative of wg(φ)

at φ = 0 as

W =

A2q3
K11K22

K11 +K22
+W3A

2q2
(
qK33

2W3

)2

(
1 +

qK33

2W3

)2 . (32)

For qK33/2W3 ≪ 1 (strong polar anchoring),

equation (32) reduces to

W0 = A2q3
K11K22

K11 +K22
. (33)

From Eq. (32), we find that the Rapini–Papoular an-

choring strengthW depends on the value ofW3, which

is consistent with that in Ref. [28]. In contrast to the

results in Refs. [28] and [30], it does not depend on

the surface-like elastic term. Through simple analysis,

we can conclude that the independence of W on the

surface-like elastic term results from the fixed bound-

ary condition of ny|z=0 = 0.

4. Conclusion

In this paper, extending the work of Fukuda and

Zhang Y J et al., we investigated the surface-groove-

induced azimuthal anchoring energy at a grooved in-

terface with both isotropic and anisotropic anchoring.

In the relatively strong anisotropic anchoring case,

i.e., 2W1 is on the order of K22q and cannot be ne-

glected, in order to obtain the solutions of ny and nz,

a fixed condition on the surface, i.e., ny|z=0 = 0, is

naturally required, which induces the nonzero surface

couple stress to be normal to the surface. The re-

sults show that finite anisotropic anchoring leads to

a surface-groove-induced azimuthal anchoring energy

(Eq. (22)) that is different from the result given in

Ref. [28]. Compared with isotropic polar anchoring,

the azimuthal anchoring for the anisotropic grooves

is strengthened. Moreover, in the one-elastic-constant

approximation, the surface-groove-induced azimuthal

anchoring energy is consistent with the result of Faetti

and reduces to the original result of Berreman with

strong polar anchoring. In addition, we studied the

Rapini–Papoular anchoring strength and found that

under our assumption, the contribution of the surface-

like elastic term to Rapini–Papoular anchoring energy

is zero.

Appendix A

The tensor description of surface anchoring per

unit area of LC is[37]

fs =
∑
α,β

Wαβ(r)nαnβ , (A1)

where Wαβ(r) is the traceless symmetrical local an-

choring tensor, which is diagonal with eigenvalues

W11, W22, and W33 in the eigen frame. The tensor

approach allows us to consider both the homogeneous

and inhomogeneous parts of anchoring.

In the eigen frame of our grooved surface

(t1, t2,v), the finite anchoring energy per unit area

can be expressed as

fs = W11(n · t1)2 +W22(n · t2)2 +W33(n · v)2, (A2)

where t1 is the unit vector along the grooves, t2 is the

local geometrical tangent to the profile, and v denotes

the local unit vector perpendicular to the surface (see

Fig. 1 in the text).

As t1, t2, and v are mutually orthonormal, we

have (n · t1)2 + (n · t2)2 + (n · v)2 = 1, and then

equation (A2) can be rewritten as

fs = (W11 −W22)(n · t1)2

+ (W33 −W22)(n · v)2 +W22. (A3)

If settingW1 = W11−W22, W3 = W33−W22 (here, W1

and W3 are the equivalent anisotropic and isotropic

anchoring strength coefficients, respectively), and ne-

glecting the W22 term, the finite anchoring energy per

066104-5
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unit area is obtained as

fs = W1(n · t1)2 +W3(n · v)2. (A4)

Appendix B

Using the full variational principle for Fel+Fs, we

can derive the equilibrium conditions given by Eqs. (7)

and (8) in the text, together with the condition at the

surface (z = 0), as follows:

{K11(∂yny + ∂znz)−Ks∂yny

− 2W3{nz −Aq sinφ cos[q(x sinφ+ y cosφ)]}}δnz

+ [Ks∂ynz −K22(∂ynz − ∂zny)

+ 2W1 sinφ(cosφ− sinφny)]δny = 0, (B1)

and with the ultimate conditions

ny|z=+∞ = 0, nz|z=+∞ = 0. (B2)

If no condition is imposed on ny and nz, equation (B1)

can be written as

K11(∂yny + ∂znz)−Ks∂yny

− 2W3{nz −Aq sinφ cos[q(x sinφ

+ y cosφ)]} = 0, (B3)

Ks∂ynz −K22(∂ynz − ∂zny)

+ 2W1 sinφ(cosφ− sinφny) = 0. (B4)

Equation (B4) denotes vanishing couple stress normal

to the surface ( ∂g
∂ny,z

∣∣
z=0

= 0), where g = fel+fs, with

fel and fs given by Eqs. (1) and (5), respectively.

Using the general solutions of the equilibrium con-

ditions given by Wolff et al.,[35] we derive the solu-

tions consistent with the boundary conditions (B2)

and (B3) as follows:

nz = a1 cos[q(x sinφ+ y cosφ)] e−qzg2(φ)

+ a2 cos[q(x sinφ+ y cosφ)] e−qzg1(φ), (B5)

ny = d1 sin[q(x sinφ+ y cosφ)] e−qzg2(φ)

+ d2 sin[q(x sinφ+ y cosφ)] e−qzg1(φ), (B6)

with

d1
a1

=
g2(φ)

cosφ
,

d2
a2

=
cosφ

g1(φ)
. (B7)

Substituting Eqs. (B5) and (B6) into Eq. (B4), we can

obtain

[(a1 + a2)(Ks −K22)q cosφ

+K22q(g2(φ)d1 + g1(φ)d2)

+ 2W1(d1 + d2)] sin(p1x+ p2y)

= 2W1 sinφ cosφ. (B8)

From Eq. (B8), we find that if 2W1 is on the order of

qK22 and cannot be neglected, Eq. (B8) (or Eq. (B4))

cannot be satisfied, in other words, there are no so-

lutions of ny and nz consistent with the boundary

conditions (B2)–(B4) simultaneously if no condition

is imposed. This naturally requires a fixed boundary

condition for ny, i.e. ny|z=0 = 0, which requires that

δny in Eq. (B1) must be set to be zero and induce the

nonzero surface couple stress normal to the surface,

i.e.
∂g

∂ny,z

∣∣∣∣
z=0

̸= 0.

Since no condition is imposed on nz, equation (B1)

then results in an additional boundary condition at

the surface (z = 0):

K11(∂yny + ∂znz)−Ks∂yny

− 2W3{nz −Aq sinφ cos[q(x sinφ+ y cosφ)]} = 0.

(B9)

References

[1] de Gennes P G and Prost J 1993 The Physics of Liquid

Crystals 2nd edn. (Oxford: Oxford University Press)

[2] Jerome B 1991 Rep. Prog. Phys. 54 391

[3] Takatoh K, Hasegawa M, Koden M, Itoh N, Hasegawa R

and Sakamoto M 2005 Alignment Technologies and Appli-

cations of Liquid Crystal Devices (Oxon: Taylor & Fran-

cis)

[4] Kriezis E E, Parry-Jones L A and Elston S J 2003 Optical

Properties and Applications of Ferroelectric and Antifer-

roelectric Liquid Crystals, in: Optical Applications of Liq-

uid Crystals, ed. Vicari L (London: Institute of Physics

Publishing)

[5] Bai F Z and Rao C H 2010 Acta Phys. Sin. 59 8280 (in

Chinese)

[6] Li W C, Liu Y G and Xuan L 2011 Acta Phys. Sin. 60

046101 (in Chinese)

[7] Ishihara S, Wakemoto H, Nalazima K and Matsuo Y 1989

Liq. Cryst. 4 669

[8] Geary J M, Goodby J W, Kmetz A R and Patel J S 1987

J. Appl. Phys. 62 4100

[9] Cheng J and Boyd G D 1979 Appl. Phys. Lett. 35 444

[10] Barbero G, Gliozzi A S and Scalerandi M 2008 J. Appl.

Phys. 104 094903

[11] Kim J H, Yoneya M, Yamamoto J and Yokoyama H 2001

Appl. Phys. Lett. 78 3055

[12] Wen B and Rosenblatt C 2001 J. Appl. Phys. 89 4747

[13] Zhang B, Lee F K, Tsui O K C and Sheng P 2003 Phys.

Rev. Lett. 91 215501

[14] Honma M, Yamamoto K and Nose T 2004 J. Appl. Phys.

96 5415

[15] Lee F K, Zhang B, Sheng P, Kwok H S and Tsui O K C

2004 Appl. Phys. Lett. 85 5556

[16] Varghese S, Crawford G P, Bastiaansen C W M, de Bore

D K G and Broer D J 2005 Appl. Phys. Lett. 86 181914

066104-6



Chin. Phys. B Vol. 21, No. 6 (2012) 066104

[17] Yeung F S, Ho J Y, Li Y W, Xie F C, Tsui O K, Sheng

P and Kwok H S 2006 Appl. Phys. Lett. 88 051910

[18] Yeung F S and Kwok H S 2006 Appl. Phys. Lett. 88 063505

[19] Gwag J S, Fukuda J, Yoneya M and Yokoyama H 2007

Appl. Phys. Lett. 91 073504

[20] Guan R H 2011 Acta Phys. Sin. 60 016105 (in Chinese)

[21] Berreman D W 1972 Phys. Rev. Lett. 28 1683

[22] Faetti S 1987 Phys. Rev. A 36 408

[23] Fournier J B and Galatola P 1999 Phys. Rev. E 60 2404

[24] Elgeti J and Schmid F 2005 Eur. Phys. J. E 18 407

[25] Harnau L, Kondrat S and Poniewierski A 2007 Phys. Rev.

E 76 051701

[26] Barbero G, Gliozzi A S, Scalerandi M and Evangelista L

R 2008 Phys. Rev. E 77 051703

[27] Wen B, Mahajan M P and Rosenblatt C 2000 Appl. Phys.

Lett. 76 1240

[28] Zhang Y J, Zhang Z D, Zhu L Z and Xuan L 2011 Liq.

Cryst. 38 355

[29] Fukuda J, Yoneya M and Yokoyama H 2007 Phys. Rev.

Lett. 98 187803

[30] Fukuda J, Yoneya M and Yokoyama H 2007 Phys. Rev.

Lett. 99 139902(E)

[31] Fukuda J, Gwag J S, Yoneya M and Yokoyama H 2008

Phys. Rev. E 77 011702

[32] Lee E S, Better P, Miyashita T, Uchida T, Kano M, Abe

M and Sugawara K 1993 Jpn. J. Appl. Phys. Part 2 32

L1436

[33] Newsome C J, O’Neill M, Farley R J and Bryan-Brown G

P 1998 Appl. Phys. Lett. 72 2078

[34] Barberi R, Dozov I, Giocondo M, Iovane M, Martinot-

Lagarde Ph, Stoenescu D, Tonchev S and Tsonev L V

1998 Eur. Phys. J. B 6 83

[35] Wolff U, Greubel W and Krüger H 1973 Mol. Cryst. Liq.
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