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Testing aspheric in interferometric setups: removal
of adjustment errors from measurement result
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Abstract

We demonstrate experimentally a valid method to remove the adjustment errors from wavefront aberration in inter-

ferometric setups when measuring convex aspheric surface with asymmetric errors. By comparing the coefficients of

Zernike polynomials of the first measurement with that of the second measurement after rotating the aspheric to

180�, we can decide whether there are adjustment errors in measured wavefront and remove them. We have successfully

tested a 100-mm diameter convex surface of errors 234 nm P-V after removing adjustment errors. It is believed that the

method may greatly improve the measurement accuracy, and simplify the adjustment of the interferometric setups for

an aspheric surface with strong asymmetric errors.
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1. Introduction

One can usually evaluate aspheric surfaces by

means of interferometric techniques. In which an

ideal aspheric wavefront fitting the surface under

test is generated by applying either a compensating
0030-4018/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.optcom.2004.08.048

* Corresponding author. Tel.: +86 0431 617 6893; fax:

+130024.

E-mail address: Luzw@ciomp.ac.cn (H. Liu).
system [1] or a matrix. The matrix is an optical ele-
ment that generates the appropriate aspheric

wavefront and bears a reference surface of oppo-

site aspherical shape [2,3]. These methods allow

one to achieve great accuracy if no adjustment er-

rors during the course of the adjustment are en-

sured. However, there is no direct method to

decide whether there are adjustment errors in most

practical cases. Some authors [4–6] have studied
the errors and have even devised ways to solve it
ed.

mailto:Luzw@ciomp.ac.cn 


340 H. Liu et al. / Optics Communications 242 (2004) 339–344
by ray tracing of the entire interferometer system

with simulation of the misalignment effects. How-

ever, this approach is limited to measuring the as-

pheric surfaces with symmetric errors. For those

surfaces with asymmetric errors, shape errors
could be interpreted as adjustment errors leading

to overcompensation. Especially for those with

strong asymmetric errors, this approach tends to

lead to large uncertainty in measured wavefront.

We present a new approach to the calculus of

the errors caused by misalignment based on Zer-

nike polynomials which works well for a surface

with asymmetric errors. By using a 5-axis Mount
with accurate self-centering element holder, a pin-

hole and a micrometer, we duplicate the tilt and

decenter with the necessary accuracy after rotating

the aspheric 180 �. Certainly, the technique to

duplicate decenter only works well for weak

aspherics (small deviations from sphere). How-

ever, it is very easy and costless compared with

other techniques. We obtain two interferograms
which include almost the same errors caused by

misalignment. By comparing these two sets of zer-

nike polynomials obtained from two different

measurement results, we can decide whether there

are errors caused by misalignment in the measured

wavefront and then remove them. This method

may greatly improve the measured accuracy for

an aspheric with asymmetric errors, especially for
that with strong asymmetric errors, and simplify

the adjustment of the interferometric setups.
2. Wave front expression by using of zernike

polynomials

Adjustment of the interferometric setup can be
time-consuming, since five degrees of freedom

need to be balanced: tilt and decenter of the asphe-

ric surface in two directions and defocus, especially

since some of the adjustment errors may compen-

sate some aberration inherent in the aspheric sur-

face with asymmetric errors under test. We can

divide the adjustment errors into three kinds: one

caused by decenter of the aspheric surface, one
caused by tilt and another caused by defocus.

We have found it appropriate to approximate

the measured wavefront by summation of ortho-
normal zernike polynomials up to 36 terms. They

easily interface with ray tracing program to deter-

mine and eliminate the influences of the actual

adjustment errors on the measured wave front

[7]. Let w(r,h) be an approximation of the meas-
ured wavefront W(r,h):
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with Aj as coefficients of Zernike polynomials and

amn as the coefficients associated with a particular

term; j is the number of the polynomial term; n

and m are the indices of Zernike polynomials;

The sine function is used for m < 0 and the cosine

function for m > 0. When testing, we adjust the as-

pheric surface to the best condition by observing
the interferometric fringe. Small defocus often

introduces focus and spherical aberration into

the result which may compensate spherical aberra-

tion inherent in the aspheric surface. However, the

spherical aberration can be calculated according to

the defocus power which can be gotten in the

measurement result, since the combination be-

tween the focus and different orders of spherical
aberration is linear [8]. Usually, this requires an as-

pheric with certain vertex radius. Here, we mainly

discuss the adjustment errors caused by decenter

and tilt in my paper. Decentering and tilting the

aspheric surface by only a small amount mainly

introduce coma into the measurement result which

may compensate the coma inherent in the aspheric

surface. We may not calculate the coma except
that the amount of the decenter and tilt is gotten.

In practice, however, it is difficult to obtain the

accurate amount of decenter and tilt. Taking into

account that mainly Zernike terms with m = ± 1

[4], as shown in Table 1, will arise when there is

coma, only these polynomials need to be evalu-

ated. The coefficients of these terms include two

parts, one corresponding to coma introduced by
decentering and tilting the aspheric surface, the

other one corresponding to coma inherent in the

surface. If we can measure the aspheric surface



Table 1

Zernike polynomials with m = ± 1

U6 = (3r3 � 2r)sin h U7 = (3r3 � 2r)cos h
U13 = (10r5 � 12r3 + 3r)sin h U14 = (10r5 � 12r3 + 3r)cos h
U22 = (35r7 � 60r5 + 30r3 � 4r)sin h U23 = (35r7 � 60r5 + 30r3 � 4r)cos h
U33 = (126r9 � 280r7 + 210r5 � 60r3 + 5p)sin h U34 = (126r9 � 280r7 + 210r5 � 60r3 + 5p)sin h

So, the coefficients of the terms with m = ± 1 of these two measurements can be expressed as Table 2.
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twice by rotating it to 180� without changing tilt

and decenter, the coma resulted by decenter and

tilt does not change after rotation, while the coma

inherent in the surface is opposite due to

sin h ¼ � sinðhþ 180�Þ;
cos h ¼ � cosðhþ 180�Þ:

ð2Þ

Adding these two set of coefficients, respec-

tively, we can get the values corresponding to

coma introduced by adjustment. Then remove it

from measured wavefront. Certainly, it is in gen-

eral not possible to measure the aspheric surface

twice by rotating it to 180� without changing tilt

and decenter. However, we can control the varia-
tion of tilt and decenter after rotation with the

accuracy to satisfy the requirement for the meas-

urement by using some special approaches. In

our experiment, tilt may be controlled to a quite

accuracy by using a mechanical reference, and dec-

entering may be controlled by in principle the null

test condition. Although, the decentering is limited

for weak aspherics, it is a very easy and cheap
technique compared with other methods. If we

want to remove adjustment errors for those

aspherics with large deviations, we must use other

techniques to duplicate the positions of the aspher-

ics after rotation, such as using fiducial marks [9].
Fig. 1. Layout for measuring convex surf
3. Experiment and data

We have designed and fabricated an interfero-

metric setup with a computer-generated hologram

fabricated onto a sphere reference surface to meas-

ure convex surface shown in Fig. 1. In this system,

the area of dimensions between the pinhole and

the first lens is 588 mm, the air gap between the
reference surface and the aspheric is set at 10

mm, and the convex aspheric being tested is an

elliptic mirror with 100 mm in diameter and 500

mm of vertex radius. The CGH for test the asphe-

ric, fabricated on the sphere reference surface of

the test plate with 11f/50 by using a laser direct

writer [10,11], requires 160 rings, with spacing var-

ying from 4000 to 200 lm. The radius of the refer-
ence is set at 500 mm to keep the orders separated

by 2 m rad. We use He–Ne laser (632.8 nm) as the

light source. In order to remain the same adjust-

ment errors after rotating the convex surface to

180�, we mount the aspheric element into the

self-centering element holder, and use a microme-

ter with 1 lm accuracy to monitor the tilt of the

aspheric surface by making its indicating needle
perpendicular to the edge of the front surface

of the mount as shown in Fig. 2. Here, the tilt

variation of the aspheric is equal to that of the
ace by using a test plate with CGH.



Fig. 2. Layout for adjustment.
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front surface of the mount as they are fixed to-

gether. Duplicating the tilt of the mount means

to duplicating that of the aspheric. Before rota-

tion, we null the fringes best by adjusting the

knobs on the mount and record the numerical

reading of the micrometer. A mask is added on

the screen which may be completed in interfero-

metric software. The fringes should completely full
the mask without vignetting. Then we rotate the

holder to 180�. After rotation the tilt may double;

the decenter may change due to the imperfect

excircle of the aspheric element, because it can re-
Fig. 3. (a) Phase map of the aspheric under test. (b) Pha
sult in noncoincidence between two centers of the

excircle of the aspheric element and the mechanical

rotation axis of the holder. First, we adjust the X/

Y tilt knobs on the mount until the numerical

reading of the micrometer is the same as that re-
corded before rotation. It means that the tilt may

be duplicated after rotation and the accuracy

may be controlled within 0.001� corresponding to

the accuracy of the micrometer. Second, we dupli-

cate the decenter by adjusting the X/Y decenter

knobs on the mount to make the fringes com-

pletely to full the mask again. The reason for this

is that the reflected beam from the aspheric may be
truncated by the small pinhole due to the change

of decenter after rotation, which will result in the

fringes imperfect in the mask. We simulate this

method in optical design software Zemax by using

the parameters of our system, in which the pinhole

is 0.3 mm in diameter, and the tilt variation is

±0.001� after rotation. The decenter variation re-

sulted in is ±18 lm and the tolerance of measured
wavefront is 0.04k. Although, the decentering can-

not be controlled to a quite accuracy using this

method, it is enough to measure weak aspherics.

What is more, it is easy and costless.

We measured a 100-mm clear-aperture alumin-

ium aspheric produced by diamond-cutting twice

by rotating it to 180� in our optical system. The
se map of the aspheric under test rotated to 180�.



Fig. 4. The coefficients for Zernike polynomials positioned according to their Zernike orders: (a) corresponding to Fig. 3(a) and (b)

corresponding to Fig. 3(b).

Table 2

Coefficients of Zernike polynomials with m = ± 1

Before rotation After rotation

A6 ¼ a12 ¼ A6�1 þ A6�2 A6 ¼ a12�1 ¼ A6�1 � A6�2

A7 ¼ a�1
2 ¼ A9�1 þ A9�2 A7 ¼ a�1

2 ¼ A7�1 � A7�2

A13 ¼ a13 ¼ A13�1 þ A13�2 A13 ¼ a13 ¼ A13�1 � A13�2

A14 ¼ a�1
3 ¼ A14�1 þ A14�2 A14 ¼ a�1

3 ¼ A14�1 � A14�2

A22 ¼ a14 ¼ A22�1 þ A22�2 A23 ¼ a14 ¼ A23�1 � A23�2

A23 ¼ a�1
4 ¼ A23�1 þ A23�2 A23 ¼ a�1

4 ¼ A23�1 þ A23�2

A33 ¼ a15 ¼ A33�1 þ A33�2 A33 ¼ a15 ¼ A33�1 þ A33�2

A34 ¼ a�1
5 ¼ A34�1 þ A34�2 A34 ¼ a�1

5 ¼ A34�1 þ A34�2

Fig. 5. Phase map with distortion correction.

H. Liu et al. / Optics Communications 242 (2004) 339–344 343
wave-front errors of the aspheric consist mainly of

spherical aberration, primary astigmatism and

coma as shown in Fig. 3. The wavefront errors

are 358 nm P-V before rotation and 340 nm P-V

after rotation, as illustrated in Fig. 3. It is obvious

that coma in these two measurement results is dif-

ferent, which means that there are adjustment er-

rors in wavefront errors gotten by measuring the
aspheric surface directly.

In order to give the difference between two

figures more clearly, we show the coefficients

for Zernike polynomials with j > 3 positioned

according to their Zernike orders in Fig. 4.

Here, the terms of tilt and power are subtracted

from the data because they originate completely

from an imperfect alignment of the setup. It is
obvious that Zernike terms of 6, 7, 13, 14, 22,
23, 33, 34 are different while the others almost

remain the same.
According to the data presented in Fig. 4 and

Table 2, we can calculate the coefficients for Zer-

nike polynomials resulted by the adjustment er-

rors. Subtracting the calculated values from the

coefficients for Zernike polynomials of the asphe-

ric surface given in Fig. 4, respectively, a distortion

correction for the final wave front with errors of

234 nm P-V is obtained. It is about 0.2k smaller
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than before and the phase map fitted with new

coefficients of Zernike polynomials is presented

in Fig. 5.
4. Summary

In conclusion, we have removed the adjustment

errors from measured wavefront when testing as-

pheric with asymmetric errors in interferometric

setups by using Zernike polynomials fitting and

measuring it twice. By using a 5-axis Mount with

accurate self-centering element holder, a microme-
ter and a pinhole with 0.3 mm in diameter, we suc-

ceeded in keeping almost the same adjustment

errors twice. The result obtained by this method

is of higher accuracy compared with that produced

by direct measurement. It is believed that this

method can be used to other interferometric setups

with a pinhole at the Fourier plane to remove the

adjustment errors from measured wavefront for an
aspheric surface with strong asymmetric errors.

The method to adjust the mount we have used

works well assuming both an interferometric setup

with a small pinhole at the Fourier plane and a
weak aspheric under test. For those setups without

pinhole and those aspherics with large deviations

from sphere, the adjustment accuracy may greatly

decrease. However, this may be compensated when

using fiducial marks [9].
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