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The optical properties of single-crystalline-Si;N, nanobelts synthesized via catalyst-assisted
pyrolysis of polymeric precursor were characterized by absorption, photoluminesgégcand
photoluminescence excitatiqi?LE). The optical absorption spectrum showed that the nanobelts
exhibited indirect absorption behavior with optical band gap~d.0 eV. Three broad peaks
centered at 1.8, 2.3, and 3.0 eV were observed from the room-temperature PL spectrum of the
nanobelts. The PLE spectra suggested the existence of multifold energy levels within the gap. A
qualitative model was proposed to explain the observed absorption, PL and PLE spe2@@5 ©
American Institute of PhysicgDOI: 10.1063/1.1862753

Silicon nitride is widely used for microelectronic and that the transition of the absorption is indiré€fThe band
optoelectronic application]s‘.3 Similar to 1lI-N semiconduc- gap is estimated to be 5.0 eV by extrapolatighe linear
tors (e.g., GaN and AI) crystalline silicon nitrides possess dependence is extrapolated to the base line caused by equip-
wide-band-gap semiconducting behavior and could be an ex»ent error, as indicated by the dashed )iriEhis value is
cellent host material due to their excellent thermo-closely consistent with theoretical studfywhere the ex-
mechanical properties, chemical inertness and high dopatapolated optical band gap ofSi;N, was calculated to be
concentratiori:®> Recently, the synthesis of one-dimensional5.0-5.2 eV. Previous studies revealed that the absorption
nanostructured silicon nitrides opened potential applications

in electronic/optic nanodevicés™* Therefore, understanding 200
of electronic/optic properties of silicon nitride is of a great - @
interest. Previous studies on the optical properties of silicon ; 160 1
nitride were primarily focused on its amorphous foftré? £
While the optical properties of crystalline silicon nitrides S 120
were reported in a few previous studiég® no detailed %
study on the subject has been reported, particularly on nano- 2 &0 ]
structured silicon nitride. 2

In this letter we report a detailed study on the optical $ 40 |
properties of single crystak-SizN, nanobelts synthesized <
via catalyst-assistant crystallization of amorphous silicon 0 : : ,
carbonitride (a-SICN).** In this process, the polysilazane 4 45 5 55 6
precursor was first decomposeda&iCN at 1000 °C under Photon Energy (eV)
a flow of N,. The a-SiCN powders were then reacted with 15
catalyst(FeC}, in this study to form Si—C—Fe liquid alloy
droplets. The nanobelts were precipitated and grew from the 12 1
liquid droplets at 1250 °C under a flow of,NThe obtained
nanobelts, which are 20—40 nm in thickness, 400—1000 nm ~ 9
in width and a few hundreds of micrometers to several mil- ;
limeters in length, are single crystalline aneSi;N, phase®® g 6

Optical absorption of the nanobelts was measured using
a UV-3101 double channel spectrometer. Figuf@ $hows 3
the relationship between absorption coefficiantersus pho-
ton energyhv. In order to further understand the nature of 0 : : :
the absorption, Fig. (b) plots the relationship betwees? 4 45 5 55 6
and hv. A linear relationship observed in Fig(kd suggests Photon Energy (eV)

FIG. 1. Transmission optical absorption spectra of &h8i;N, nanobelts:
dauthor to whom correspondence should be addressed; electronic mai(a) the relationship between the absorption coefficiersind photon energy
lan@mail.ucf.edu hv, and(b) relationship between!? and photon energiv.
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FIG. 2. Photoluminescence of the;Sj nanobelts under excitation of o 1501
325 nm at room temperature. Dotted line shows the Gauss-fit peaks, cen- §
tered at 1.8, 2.3, and 3.0 eV, respectively. E 100
o
2 s X50
2 ]
edge for stoichiometric amorphous silicon nitrid&i/N &
=1.33 was ~4.6 eV®'%2 and was ascribed to Si-Si 0

defects'®> ' Current result suggests that the nanobelts likely B e Eneray V)

contain a lower amount of Si—Si defects than their amor-

phous counterparts, thus the intrinsic absorption can be reé~G. 3. The photoluminescence excitation spectra ofctt®i;N, nanobelts

vealed. In addition, a weak absorption peak centered atith detection a(a) 3.3 eV and(b) 1.8 eV.

4.2 eV, which was not observed previously, can also be seen

from Fig. 1, suggesting the existence of a new absorption Robertsof has defined defects in silicon nitride to be of

process. four types: Si—Si and N-N bonds, and Si and N dangling
Figure 2 shows a typical photoluminescerifd) spec- bonds. The Si—Si bond forms a bondingorbital and anti-

trum of the nanobelts measured under the excitation of HeCtondingo™ orbital that are separated by 4.6 eV for stoichio-

laser 325 nm linéE,,=3.81 eV}. Intensive light emission of metric silicon nitride'**?The silicon dangling bon@° cen-

the nanobelts was observed even with the naked eye. THer) forms a defects state about the midgap betweeand

spectrum shows a broad emission band with the maximum at".*****' The silicon dangling bond forms a dominant trap

~2.3 eV. This broadband can be further split into threeand recombination center in silicon nitride and participates in

peaks, centered at 1.8, 2.3 and 3.0 eV, respectively. Théne radiative transition giving rise to the luminesce &,

similar PL behavior was observed for amorphous siliconAccording to Robertson, besides the nitrogen dangling

nitride 1619222%uggesting that it is likely that the same de- bond (N,%, N centey, another type of nitrogen defect state

fects were involved in the light emission processes for thecan also give rise to a level within the Si-Si gap: namely

nanobelts as for amorphous silicon nitride. N,". The N," can be formed by reaction between positively
Further understanding of the light emission processegharged silicon dangle bond and a bulk nitrog&iy*+N,°

was carried out by measuring the luminescence intensity o N,*+Si,%). Previous studiéé**suggested that the ;Nand

the nanobelts as a function of excitation energy at selectivél,’ defects form energy levels with the trap depth of

detection energies. FiguresaBand 3b) show the photolu- 1.3-1.5 eV from the Si-Si band edges, respectively. The ex-

minescence excitatiofPLE) spectra with detections at istence of silicon dangling bonds and nitrogen dangling

3.3 eV(e) and 1.8 eV(e,), respectively. It can be seen that bonds has been conclusively proved by analysi$’8f and

for both detections the positions of maximum luminescencé*N hyperfine spectra, respectivély:

intensity occur at the similar excitation energy; the onset Based on these previous works, a simple qualitative

energy is~5.0 eV. This result suggests that the major con-model is proposed here to explain the optical behavior ob-

tribution for the photoluminescence of the nanobelts is theserved in the nanobelts, as shown in Fig. 4. In this model, the

transition between the intrinsic band edges. Previous %*fudymain broad PL peak at 2.3 eV arises from recombination

revealed that the photoluminescence of amorphous silicoprocesses at the silicon dangling bonds, similar as for amor-

nitrides was dominated by the transition between Si—Si dephous silicon nitride. The peak at 3.0 eV has a contribution

fect states. Again, it is likely that the amount of Si-Si defectsfrom the recombination between the Si-8i level and the

in the crystalline nanobelts is much less than that in amor-

phous SiN,. Both PLE spectra appear to have a contribution Emission PLE for PLE for

from a peak at-4.2 eV, which is consistent with the weak atz3ev 830V 18eV

peak observed in the absorption spectr{ffiy. 1). This re- —5 o Sisi Y X

sult further suggests the existence of the transition. The PLE ' 4.2eV v Ne

spectrum fore; also contains a peak at4.6 eV, which is | 32ev

not observed in the PLE spectrum fey. The 4.6 eV transi- Eip =506V T4 23ev ¥

tion could arise from Si-Si defett?? The spectrum foe, \ Ny

. . . . 1.4 eV

shows an additional peak at2.6 eV, but the emission in-

tensity at this peak is much weaker than that at excitation

energies of 4.2 and 5.0 eV. FIG. 4. Model for photoluminescence in theSi;N, nanobelts.
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