Optical Materials 33 (2011) 1591-1594

ELSEVIER

Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Dynamical processes of energy transfer in red emitting phosphor CaMoO₄:Sm³⁺, Eu³⁺

Ye Jin^{a,b}, Zhendong Hao^a, Xia Zhang^a, Yongshi Luo^a, Xiaojun Wang^{a,c,*}, Jiahua Zhang^{a,*}

^a Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033. China

^b Department of Applied Physics, School of Optoelectronic Information, Chongqing University of Technology, 69 Hongguang Street, Chongqing 400054, China ^c Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA

ARTICLE INFO

Article history: Received 10 December 2010 Received in revised form 8 April 2011 Accepted 9 April 2011 Available online 10 May 2011

Keywords: Dynamical process Energy transfer Red phosphor CaMoO4:Sm³⁺, Eu³⁺

1. Introduction

Since the great realization of GaN based blue and/or near-ultraviolet (NUV) light-emitting diode (LED) [1], solid-state lighting based on phosphor converted (pc) white LEDs has attracted much interests because of its great advantages over the conventional incandescent and fluorescent lamps [2-5] in power efficiency, reliability, lifetime and environmental protection [6]. The general strategy of producing white light is to combine a blue LED with a yellow emitting phosphor (YAG:Ce³⁺). This combination leads to low color rendering index (CRI) because of deficient red component in the yellow phosphor. The combination of a NUV LED with RGB-color phosphors is another alternative, which may provide a high CRI [7] if red emitting phosphors, which are scarce at present, are obtained. Eu³⁺ doped CaMoO₄ has been investigated as a potential red emitting phosphor for NUV LED based pc-white LEDs because it exhibits more stable physical and chemical properties than the well-known red phosphor, Y₂O₂S:Eu³⁺ [8]. The red emission is originated from ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺ and the NUV excitation performs at around 395 nm through ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ absorption of Eu³⁺. Some investigations on enhancing the luminescence intensity of CaMoO₄:Eu³⁺ were reported by introducing Li⁺, Na⁺,

E-mail address: zhangjh@ciomp.ac.cn (J. Zhang, X. Wang).

ABSTRACT

Upon ${}^{4}K_{11/2}$ excitation of Sm³⁺ at 405 nm, the performance of energy transfer from Sm³⁺ to Eu³⁺ in the red emitting phosphor CaMoO₄:Eu³⁺, Sm³⁺ significantly extends its excitation region for better matching the near-UV LED. Photoluminescence spectra indicate that the energy transfer pathway concerns the relaxation from ${}^{4}K_{11/2}$ to ${}^{4}G_{5/2}$ of Sm³⁺ and subsequent transfer to ${}^{5}D_{0}$ of Eu³⁺ rather than ${}^{5}D_{1}$ of Eu³⁺. The fluorescent decay pattern of Sm³⁺ ${}^{4}G_{5/2}$ level in CaMoO₄:0.5% Sm³⁺, 2% Eu³⁺ is studied at 77 K based on the Inokuti–Hirayama formula, revealing an electronic dipole–dipole interaction between Sm³⁺ and Eu³⁺. The coefficient for the energy transfer is obtained to be 8.5×10^{-40} s⁻¹ cm⁶. The fluorescence rise and decay pattern of Eu³⁺ ${}^{5}D_{0}$ level as Sm³⁺ is only excited at 77 K is well described by the dynamical processes of the energy transfer.

© 2011 Elsevier B.V. All rights reserved.

K⁺ and Bi³⁺ ions into the phosphor [9–11]. Sm³⁺ was also introduced in CaMoO₄:Eu³⁺, Zhuang et al. compared the luminescence of CaMoO₄:Eu³⁺ with CaMoO₄:Eu³⁺, Sm³⁺ [12]. In our previous work [13], we reported that codoping Sm³⁺ into CaMoO₄:Eu³⁺ can generate additional NUV excitation line at 405 nm, originating from ${}^{6}H_{5/2} \rightarrow {}^{4}K_{11/2}$ absorption of Sm³⁺. This behavior is proved to be the result of energy transfer from the ${}^{4}K_{11/2}$ level of Sm³⁺ to the ${}^{5}D_{0}$ level of Eu³⁺. The significance of energy transfer is to extend the excitation lines for effectively covering the NUV LED source in the spectral range of 390–410 nm so as to take advantage of whole spectral components of the LED excitation source. The energy transfer from Sm³⁺ to Eu³⁺ has been also investigated in other red emitting phosphors Na_{0.5}Sm_{0.1}Eu_{0.4}WO₄ [14], NaEu(MOO₄)₂ [15] and other molybdate [16]. However, the physical processes and related parameters in the energy transfer in Sm³⁺ and Eu³⁺ codoped system have not been reported yet.

In this paper, we demonstrate, to our knowledge for the first time, the pathway, interaction mechanism and dynamical processes of energy transfer between Sm³⁺ and Eu³⁺ in CaMoO₄ basing on spectroscopic data and the analysis of rise and decay patterns of fluorescence of Sm³⁺ and Eu³⁺ by using Inokuti–Hirayama formula.

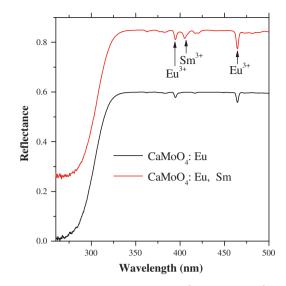
2. Experimental

CaMoO₄:Sm³⁺/Eu³⁺ materials were obtained by solid state reaction in the air as we reported previously [11]. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were

^{*} Corresponding authors. Address: Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun 130033, China.

^{0925-3467/\$ -} see front matter \odot 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.optmat.2011.04.009

recorded at room temperature using a Hitachi F-4500 spectrophotometer. In luminescent decay curve measurements, 563.32 nm light pulse from an optical parametric oscillator (OPO) was used as excitation source, and the signals were recorded by a Tektronix digital oscilloscope model (Tektronix, TDS 3052, 500 MHz, and 5 Gs/s) with the sample was situated in liquid nitrogen.


3. Results and discussion

The powder X-ray diffraction pattern of CaMoO₄:20% Eu³⁺, 0.5% Sm³⁺ is shown in Fig. 1a. All peaks for the as-prepared sample match well with the standard pattern of a pure CaMoO₄ tetragonal structure (JCPDS No. 85-0585). No peaks due to any other phases are detected, indicating the dopant ions do not change the crystal structure of the hosts.

Fig. 1b shows the PLE spectra by monitoring the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission of Eu³⁺ at 612 nm in Eu³⁺ singly doped and Eu³⁺ and Sm³⁺ doubly doped CaMoO₄. Both of the samples show a broad PLE band ranging from 200 nm to 325 nm, which is assigned to the combination of the charge transfer transition of Eu³⁺–O²⁻ and MoO₄²⁻ group [9]. The sharp PLE line located at around 395 nm is ascribed to the ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ transitions of Eu³⁺. The other PLE line at 405 nm, which appears only in the samples containing Sm³⁺, is ascribed to the ${}^{6}H_{5/2} \rightarrow {}^{4}K_{11/2}$ transition of Sm³⁺, indicating the performance of energy transfer from Sm³⁺ to Eu³⁺.

The diffused reflectance spectra of CaMoO₄:Eu³⁺ and Ca-MoO₄:Eu³⁺, Sm³⁺ were measured, as shown in Fig. 2. An absorption edge at 300 nm owing to MoO^{2-} is clearly presented in both the samples and the absorption peaks of intra-4f transitions of Eu³⁺ at 395 and 465 nm, Sm³⁺ at 405 nm are presented. It can be found that the absorption of Eu³⁺ ions enhances with the introduction of Sm³⁺.

The PL spectra of Sm³⁺ singly doped CaMoO₄ under excitation at 405 nm exhibit three characteristic transitions of Sm³⁺:⁴G_{5/2} \rightarrow ⁶H_{5/2} (561 nm), ⁴G_{5/2} \rightarrow ⁶H_{7/2} (596 nm, 604 nm) and ⁴G_{5/2} \rightarrow ⁶H_{9/2} (642 nm), as shown in Fig. 3A(a). The PL spectra of Eu³⁺ singly doped CaMoO₄ under excitation at 395 nm, consists of series characteristic lines of Eu³⁺ originating from the transitions of ⁵D₁ \rightarrow ⁷F₁ at 534 nm, ⁵D₀ \rightarrow ⁷F₁ at 590 nm and ⁵D₀ \rightarrow ⁷F₂ at 612 nm as shown in Fig. 3A(b). In Eu³⁺ and Sm³⁺ doubly doped CaMoO₄, the PL spectra under 395 nm excitation (Fig. 3A(c)) is the same as that of Eu³⁺ singly doped samples, indicating that Sm³⁺ cannot be excited by 395 nm and no pronounced energy transfer from Eu³⁺ to Sm³⁺. When the doubly doped sample is excited at 270 nm, the characteristic emissions of both Eu³⁺ and Sm³⁺ can be observed, as shown in Fig. 3A(d), indicating the charge transfer state of Eu³⁺-O²⁻ and MoO₄²⁻ group can transfer energy to both of Eu³⁺ and Sm³⁺. When

Fig. 2. Diffuse reflection spectra of CaMoO₄:Eu³⁺ and CaMoO₄:Eu³⁺, Sm³⁺.

the doubly doped sample is excited at 405 nm responsible for the ${}^{6}H_{5/2} \rightarrow {}^{4}K_{11/2}$ transition of Sm³⁺, besides the fluorescence of Sm³⁺, the fluorescence from ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu³⁺ is also observed, as shown in Fig. 3A(e). This is the indication of energy transfer from Sm³⁺ to Eu³⁺. A notable behavior presented in Fig. 3A(e) is that the ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ emission of Eu³⁺ is not detected at 534 nm. As a result, the energy transfer pathway is proposed as illustrated schematically in Fig. 3B. As the ${}^{4}K_{11/2}$ level of Sm³⁺ is excited, it completely relaxes down to the ${}^{4}G_{5/2}$ state either returns to the ground states (${}^{6}H_{9/2}$, ${}^{6}H_{7/2}$ and ${}^{6}H_{5/2}$) to emit or transfers its energy to the ${}^{5}D_{0}$ level not the ${}^{5}D_{1}$ level of Eu³⁺ to produce the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ emissions.

The fluorescent decay curves in CaMoO₄:0.5% Sm³⁺, *x*% Eu³⁺ (*x* = 0, 1, 2, and 20) are studied for understanding the dynamical processes in energy transfer. The decay curves $I_{Sm}(t)$ for the ${}^{4}G_{5/2}$ level of Sm³⁺ are measured at 77 K by monitoring ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ emission at 650.5 nm as the ${}^{4}G_{5/2}$ level is excited by pulsed laser at 563.32 nm, as shown in Fig. 4. The lifetimes of Sm³⁺ 4 $G_{5/2}$ level are obtained using the following expression and listed in Table 1:

$$\tau_{\rm Sm} = \frac{1}{I_0} \int_0^\infty I_{\rm Sm}(t) dt \tag{1}$$

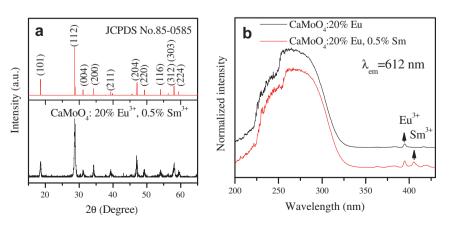
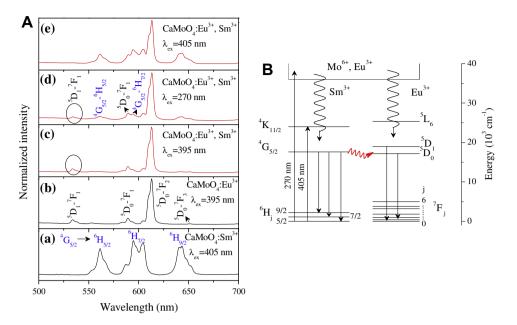
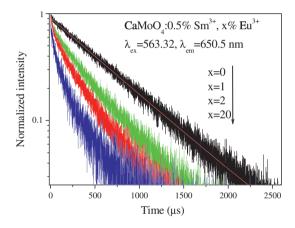




Fig. 1. (a) X-ray diffraction pattern of CaMoO₄:20% Eu³⁺, 0.5% Sm³⁺; (b) excitation spectra monitoring the ${}^{5}D_{0}-{}^{7}F_{2}$ emission at 612 nm of Eu³⁺ in CaMoO₄:20% Eu³⁺ and CaMoO₄:20% Eu³⁺, 0.5% Sm³⁺.

Fig. 3. (A) Emission spectra of (a) CaMoO₄:Sm³⁺ (λ_{ex} = 405 nm), (b) CaMoO₄:Eu³⁺ (λ_{ex} = 395 nm) and (c-d) CaMoO₄:Eu³⁺, Sm³⁺ (λ_{ex} = 395 nm, 270 nm and 405 nm, respectively); (B) scheme of energy transfer pathway in CaMoO₄:Eu³⁺, Sm³⁺.

Fig. 4. Decay curves of fluorescence at 650.5 nm corresponding to ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ transition of Sm³⁺ in CaMoO₄:0.5% Sm³⁺, *x*% Eu³⁺ (*x* = 0, 1, 2, and 20) at 77 K.

 Table 1

 Lifetimes of the ${}^{4}G_{5/2}$ level of Sm³⁺ in CaMoO₄:0.5% Sm³⁺, x% Eu³⁺ (x = 0, 0.2, 0.5, 1, 2, 20, and 22) ($\lambda_{ex} = 563.32$ nm, $\lambda_{em} = 650.5$ nm).

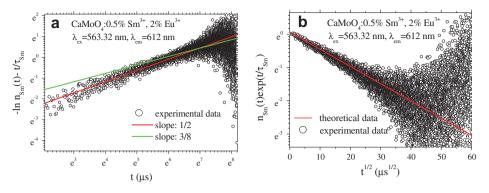
Sample	CaMoO ₄ :0.5 % Sm ³⁺ , x % Eu ³⁺						
x	0	0.2	0.5	1	2	20	22
τ (μs)	595	591	572	309	229	138	133

where I_0 is the fluorescence intensity at the time t = 0. As can be seen in Table 1, the lifetimes reduce with increasing Eu³⁺ content x, reflecting the effect of energy transfer from ${}^{4}G_{5/2}$ level of Sm³⁺ to Eu³⁺. The decay curve is exponential for Sm³⁺ singly doped sample, i.e. x = 0, but non-exponential for Sm³⁺ and Eu³⁺ doubly doped sample. For the codoped samples, the non-exponential decay is resulted from the inhomogeneous energy transfer rate [17].

After Sm³⁺ is excited into its ${}^{4}G_{5/2}$ state, the energy transfer from donor Sm³⁺ ${}^{4}G_{5/2}$ to acceptor Eu³⁺ ${}^{5}D_{0}$ occurs. The depopulation of Sm³⁺ can be described by,

$$n_{\rm Sm}(t) = e^{-t/\tau_{\rm Sm}}\phi(t) \tag{2}$$

with


$$\phi(t) = \int_0^\infty f(w) e^{-wt} dw \tag{3}$$

where $n(t)_{\rm Sm}$ is the population of ${}^{4}G_{5/2}$ of Sm³⁺ at time t. f(w) is the distribution function of energy transfer rate w; $\tau_{\rm Sm}$ is the intrinsic lifetime of the ${}^{4}G_{5/2}$ level, which is determined to be 595 µs from the exponential decay curve in CaMoO₄:0.5% Sm³⁺. $\phi(t)$ denotes the loss of excited Sm³⁺ ions due to energy transfer to Eu³⁺. If the energy transfer rate between a donor and an acceptor is proportional to an inverse power of the distance r, the rate may be written as α/r^m , where α is the coefficient for the energy transfer, m = 6, 8, 10 for dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole interactions, respectively. According to Inokuti and Hirayama formula [18], one has,

$$\phi(t) = \exp\left[-\frac{4}{3}\pi\Gamma\left(1-\frac{3}{m}\right)n_a\alpha^{3/m}t^{3/m}\right] \tag{4}$$

where $\Gamma(x)$ denotes the gamma function, n_a is the number of acceptors per unit volume. From Eqs. (2) and (4), $\ln\{-\ln[n_{\rm Sm}(t)]-t/\tau_{\rm Sm}\}$ acts as a linear function of ln(t) with a slop of 3/m. To understand the interaction mechanism between Sm³⁺ and Eu³⁺, the Sm³⁺ fluorescence decay pattern is chosen as $n_{\rm Sm}(t)$. Fig. 5a shows the ln-ln plot of $-\ln(n_{\rm Sm}(t))-t/\tau_{\rm Sm}$ vs time *t* for the sample CaMoO₄:0.5% Sm³⁺, 2% Eu³⁺. It is demonstrated that the slope is more close to 3/6 (red¹ line) rather than 3/8 (green line) and/or 3/10, indicating an electric dipole–dipole energy transfer with m = 6. Fig. 5b shows that the plot of $n_{\rm Sm}(t)\exp(t/\tau_{\rm Sm})$ vs $t^{1/2}$ is a linear pattern with a slop of $4\pi^{3/2}n_a\alpha^{1/2}/3$, as described by Eq. (4). From the slop of the linear pattern, $\alpha = 8.5 \times 10^{-40} \text{ s}^{-1} \text{ cm}^6$ is obtained, where n_a , the number of acceptor Eu³⁺ ions per unit volume is given by 2% N_{Ca} with $N_{Ca} = 1.284 \times 10^{22}$ cm⁻³ being the number of Ca sites per unit volume in CaMoO₄ matrix. In CaMoO₄, the nearest Ca–Ca distance r_0 is 0.3896 nm and a Ca²⁺ ion has four Ca²⁺ ions as nearest neighbors. In the present sample with Eu³⁺ fractional concentration of 0.02, the initial energy transfer rate due to Sm^{3+} to the nearest Eu^{3+} can be estimated by $0.02 \times 4\alpha/r_0^6$, which yields the rate to be

 $^{^{1}\,}$ For interpretation of color in Fig. 5a, the reader is referred to the web version of this article.

Fig. 5. (a) ln-ln plot of $-\ln(n_{Sm}(t))-t/\tau_{Sm}$ vs time t in CaMoO₄:0.5% Sm³⁺, 2% Eu³⁺ at 77 K; (b) plot of $n_{Sm}(t)\exp(t/\tau_{Sm})$ vs $t^{1/2}$ in CaMoO₄:0.5% Sm³⁺, 2% Eu³⁺ at 77 K.

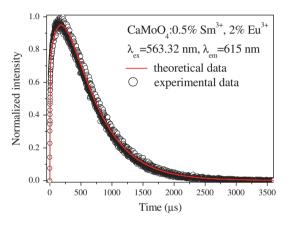


Fig. 6. Rise and decay pattern of fluorescence at 615 nm corresponding to Eu^{3+} $^{5}D_{0} \rightarrow ^{7}F_{2}$ transition in CaMoO₄:0.5%Sm³⁺, 2%Eu³⁺ as Sm³⁺ $^{4}G_{5/2}$ level is only excited by pulsed laser at 563.32 nm at 77 K.

 1.9×10^4 s⁻¹. Meanwhile, the initial energy transfer rate obtained by subtracting the radiative rate from the initial fluorescence decay rate in the sample with 0.5% Sm^{3+} and 2% Eu^{3+} is $2.0\times10^4\,s^{-1}$ which is slightly larger than the calculated value, indicating that the nearest Sm³⁺–Eu³⁺ pairs govern the initial energy transfer.

Owing to $Sm^{3+} \rightarrow Eu^{3+}$ energy transfer, after pulsed excitation of $\text{Sm}^{3+} \text{}^{4}\text{G}_{5/2}$, the populations of $\text{Eu}^{3+} \text{}^{5}\text{D}_{0}$ satisfies the following rate equation:

$$dn_{Eu}(t)/dt = -n_{Eu}(t)/\tau_{Eu} + wn_{Sm}(t)$$
(5)

where n_{Eu} is the population of the ⁵D₀ of Eu³⁺, τ_{Eu} is the intrinsic lifetime of ${}^{5}D_{0}$. Using Eqs. (2), (3), and (5), we obtain

$$n_{Eu}(t) = e^{-t/\tau_{Eu}} \int_0^\infty \frac{wf(w)}{w + 1/\tau_{Sm} - 1/\tau_{Eu}} (1 - e^{-(w + 1/\tau_{Sm} - 1/\tau_{Eu})t}) dw$$
(6)

In the case of electric-dipole–dipole interaction with m = 6, the transfer rate distribution function f(w) is written as [19]

$$f(w) = \frac{2\pi n_a \alpha^{1/2}}{3w^{3/2}} \exp\left(-\frac{4\pi^3 n_a^2 \alpha}{9w}\right)$$
(7)

Using Eq. (6), a numerical calculation for simulating the rise and decay pattern of fluorescence from ${}^{5}D_{0}$ of Eu³⁺ in CaMoO₄:0.5% Sm³⁺, 2% Eu³⁺ is perfectly performed, as shown in Fig. 6. In the calculation, τ_{Fu} = 470 µs is applied, which is obtained from the exponential decay pattern of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ fluorescence in 2% Eu $^{3+}$ singly doped CaMoO₄. As one can see, the decay curve of $Eu^{3+5}D_0$ level is composed of a rising edge starting from zero and a falling decay. It indicates that the populations of ${}^{5}D_{0}$ level of Eu³⁺ are completely fed by $\text{Sm}^{3+4}\text{G}_{5/2}$ through energy transfer.

4. Conclusions

In CaMoO₄:Sm³⁺, Eu³⁺, when the ⁴K_{11/2} of Sm³⁺ is excited, the excited ⁴K_{11/2} relaxes down to the ⁴G_{5/2} of Sm³⁺ itself rather than transfers to Eu³⁺. The Sm³⁺ \rightarrow Eu³⁺ energy transfer performs through the pathway from Sm³⁺⁴G_{5/2} state to Eu³⁺⁵D₀ state rather than $Eu^{3+} {}^{5}D_{1}$ state. The electronic dipole-dipole interaction between Sm³⁺ and Eu³⁺ governs the transfer dynamical processes with the coefficient for the energy transfer of 8.5×10^{-40} s⁻¹ cm⁶. As the ${}^{4}K_{11/2}$ of Sm³⁺ is only excited, the fluorescent rise and decay pattern of Eu³⁺ ${}^{5}D_{0}$ state is well simulated based on Sm³⁺ \rightarrow Eu³⁺ dipole-dipole energy transfer model.

Acknowledgments

This work is financially supported by the National Nature Science Foundation of China (10834006, 10774141, 10904141, 10904140), the MOST of China (2006CB601104), the Scientific project of Jilin province (20090134, 20090524) and CAS Innovation Program, the Youth Foundation of Chongqing University of Technology.

References

- S. Nakamura, T. Mukai, M. Senoh, J. Appl. Phys. 76 (1994) 8189.
 Z.G. Wei, L.D. Sun, C.S. Liao, C.H. Yan, S.H. Huang, Appl. Phys. Lett. 80 (2002) 1447.
- [3] D.K. Williams, B. Bihari, B.M. Tissue, J.M. McHale, J. Phys. Chem. B 102 (1998) 916.
- [4] M. Yu, J. Lin, J. Fang, Chem. Mater. 17 (2005) 1783.
- Z.H. Li, J.H. Zeng, Y.D. Li, Small 3 (2007) 438. N. Hirosaki, R.J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. [6] Mitomo, Appl. Phys. Lett. 86 (2005) 211905.
- J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim, T.W. Kim, Appl. Phys. [7] Lett. 85 (2004) 3696.
- [8] Y.S. Hu, W.D. Zhuang, H.Q. Ye, D.H. Wang, S.S. Zhang, X.W. Huang, J. Alloys Compd. 390 (2005) 226. [9] J G Wang, X.P. Jing, C.H. Yan, J.H. Lin, J. Electrochem. Soc. 152 (2005) G186.
- [10] J. Liu, H.Z. Lian, C.S. Shi, Opt. Mater. 29 (2007) 1591.
- [11] S.X. Yan, J.H. Zhang, X. Zhang, S.Z. Lu, X.G. Ren, Z.G. Nie, X.J. Wang, J. Phys. Chem. C 111 (2007) 13256.
- [12] C.L. Zhao, Y.S. Hu, W.D. Zhuang, X.W. Huang, T. He, J. Rare Earths 27 (2009) 758.
- [13] Y. Jin, J.H. Zhang, S.Z. Lu, H.F. Zhao, X. Zhang, X.J. Wang, J. Phys. Chem. C 112 (2008) 5860.
- [14] W.W. Holloway JR., M. Kestigian, J. Opt. Soc. Am. 56 (1966) 1171.
- [15] Z. Wang, H. Liang, M. Gong, Q. Su, Electrochem. Solid-State Lett. 8 (2005) H33.
- [16] X. Wang, Y. Xian, G. Wang, J. Shi, Q. Su, M. Gong, Opt. Mater. 30 (2007) 521.
- [17] J. Hegarty, D.L. Huber, W.M. Yen, Phys. Rev. B 23 (1981) 6271.
- [18] M. Inokuti, F. Hirayama, J. Chem. Phys. 43 (1965) 1978.
- [19] S. Huang, L. Lou, J. Lumin. 45 (1990) 377.