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Upon *Ky1); excitation of Sm** at 405 nm, the performance of energy transfer from Sm** to Eu* in the red
emitting phosphor CaMoO,:Eu®*, Sm3* significantly extends its excitation region for better matching the
near-UV LED. Photoluminescence spectra indicate that the energy transfer pathway concerns the relax-
ation from “K; 12 to “Gs), of Sm** and subsequent transfer to *Dg of Eu®* rather than °D; of Eu®". The fluo-
rescent decay pattern of Sm** “Gs, level in CaM00,:0.5% Sm**, 2% Eu®" is studied at 77 K based on the
Inokuti-Hirayama formula, revealing an electronic dipole-dipole interaction between Sm*" and Eu®*.
The coefficient for the energy transfer is obtained to be 8.5 x 107%° s~! ¢cm®. The fluorescence rise and
decay pattern of Eu®>* °Dg level as Sm>* is only excited at 77 K is well described by the dynamical pro-
cesses of the energy transfer.
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1. Introduction

Since the great realization of GaN based blue and/or near-ultra-
violet (NUV) light-emitting diode (LED) [1], solid-state lighting
based on phosphor converted (pc) white LEDs has attracted much
interests because of its great advantages over the conventional
incandescent and fluorescent lamps [2-5] in power efficiency, reli-
ability, lifetime and environmental protection [6]. The general
strategy of producing white light is to combine a blue LED with a
yellow emitting phosphor (YAG:Ce®*). This combination leads to
low color rendering index (CRI) because of deficient red compo-
nent in the yellow phosphor. The combination of a NUV LED with
RGB-color phosphors is another alternative, which may provide a
high CRI [7] if red emitting phosphors, which are scarce at present,
are obtained. Eu** doped CaMoO, has been investigated as a poten-
tial red emitting phosphor for NUV LED based pc-white LEDs
because it exhibits more stable physical and chemical properties
than the well-known red phosphor, Y,0,S:Eu" [8]. The red emis-
sion is originated from °Dy — ’F, transition of Eu** and the NUV
excitation performs at around 395 nm through ’Fo — °Lg absorp-
tion of Eu®". Some investigations on enhancing the luminescence
intensity of CaMoO,4:Eu®* were reported by introducing Li*, Na*,
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K* and Bi>* ions into the phosphor [9-11]. Sm®* was also intro-
duced in CaMoO,:Eu?*, Zhuang et al. compared the luminescence
of CaMoO4:Eu®* with CaMoO4:Eu?*, Sm3* [12]. In our previous
work [13], we reported that codoping Sm3* into CaMoO4:Eu**
can generate additional NUV excitation line at 405 nm, originating
from ®Hsj, — *Kq1/2 absorption of Sm3*. This behavior is proved to
be the result of energy transfer from the “Kj; 12 level of Sm>* to the
3Dy level of Eu*". The significance of energy transfer is to extend
the excitation lines for effectively covering the NUV LED source
in the spectral range of 390-410 nm so as to take advantage of
whole spectral components of the LED excitation source. The en-
ergy transfer from Sm>* to Eu®* has been also investigated in other
red emitting phosphors NagsSmgEug4WO, [14], NaEu(MoO,),
[15] and other molybdate [16]. However, the physical processes
and related parameters in the energy transfer in Sm>* and Eu®*
codoped system have not been reported yet.

In this paper, we demonstrate, to our knowledge for the first
time, the pathway, interaction mechanism and dynamical pro-
cesses of energy transfer between Sm>* and Eu®* in CaMoO, basing
on spectroscopic data and the analysis of rise and decay patterns of
fluorescence of Sm>* and Eu* by using Inokuti-Hirayama formula.

2. Experimental

CaMo0,:Sm>"/Eu" materials were obtained by solid state reac-
tion in the air as we reported previously [11]. Photoluminescence
(PL) and photoluminescence excitation (PLE) spectra were
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recorded at room temperature using a Hitachi F-4500 spectropho-
tometer. In luminescent decay curve measurements, 563.32 nm
light pulse from an optical parametric oscillator (OPO) was used
as excitation source, and the signals were recorded by a Tektronix
digital oscilloscope model (Tektronix, TDS 3052, 500 MHz, and
5 Gs/s) with the sample was situated in liquid nitrogen.

3. Results and discussion

The powder X-ray diffraction pattern of CaMo0,4:20% Eu*, 0.5%
Sm>* is shown in Fig. 1a. All peaks for the as-prepared sample
match well with the standard pattern of a pure CaMoO, tetragonal
structure (JCPDS No. 85-0585). No peaks due to any other phases
are detected, indicating the dopant ions do not change the crystal
structure of the hosts.

Fig. 1b shows the PLE spectra by monitoring the °Dy — ’F, emis-
sion of Eu*>" at 612 nm in Eu>* singly doped and Eu** and Sm** dou-
bly doped CaMo0O,. Both of the samples show a broad PLE band
ranging from 200 nm to 325 nm, which is assigned to the combina-
tion of the charge transfer transition of Eu*>*-0?~ and MoO3~ group
[9]. The sharp PLE line located at around 395 nm is ascribed to the
7Foy — °Lg transitions of Eu>*. The other PLE line at 405 nm, which
appears only in the samples containing Sm3*, is ascribed to the
5Hsj, — *Kq1j2 transition of Sm®*, indicating the performance of en-
ergy transfer from Sm>* to Eu®".

The diffused reflectance spectra of CaMoO4:Eu** and Ca-
MoO,4:Eu®*, Sm>* were measured, as shown in Fig. 2. An absorption
edge at 300 nm owing to MoO?~ is clearly presented in both the
samples and the absorption peaks of intra-4f transitions of Eu®*
at 395 and 465 nm, Sm>* at 405 nm are presented. It can be found
that the absorption of Eu* ions enhances with the introduction of
Sm>".

The PL spectra of Sm>* singly doped CaMoO, under excitation at
405 nm exhibit three characteristic transitions of Sm**:*Gs;; —
Hs (561 nm), “Gsjz — ®Hyj2 (596 nm, 604 nm) and “Gsjz — °Hopz
(642 nm), as shown in Fig. 3A(a). The PL spectra of Eu®* singly
doped CaMoO,4 under excitation at 395 nm, consists of series char-
acteristic lines of Eu>* originating from the transitions of °D; — “F,
at 534 nm, °Dy — “F; at 590 nm and °Dy — ’F, at 612 nm as shown
in Fig. 3A(b). In Eu>* and Sm>* doubly doped CaMoO,, the PL spec-
tra under 395 nm excitation (Fig. 3A(c)) is the same as that of Eu®*
singly doped samples, indicating that Sm>* cannot be excited by
395 nm and no pronounced energy transfer from Eu®>* to Sm3*.
When the doubly doped sample is excited at 270 nm, the charac-
teristic emissions of both Eu>* and Sm>* can be observed, as shown
in Fig. 3A(d), indicating the charge transfer state of Eu3*-0%~ and
MoO>~ group can transfer energy to both of Eu** and Sm**. When
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Fig. 2. Diffuse reflection spectra of CaMoO,:Eu®* and CaMoO4:Eu®*, Sm**.

the doubly doped sample is excited at 405 nm responsible for the
SHsj — *Kq1j2 transition of Sm>', besides the fluorescence of
Sm>*, the fluorescence from °Dy — ’F; and °Dy — ’F, transitions
of Eu®* is also observed, as shown in Fig. 3A(e). This is the indica-
tion of energy transfer from Sm>* to Eu>*. A notable behavior pre-
sented in Fig. 3A(e) is that the °D; — ’F; emission of Eu®* is not
detected at 534 nm. As a result, the energy transfer pathway is pro-
posed as illustrated schematically in Fig. 3B. As the *K;; 12 level of
Sm>®* is excited, it completely relaxes down to the “Gs;; state with-
out energy transfer to Eu*. Subsequently, the 4G5,2 state either re-
turns to the ground states (°Hop, ®H7;; and °Hsjy) to emit or
transfers its energy to the >Dg level not the D, level of Eu* to pro-
duce the °Dy — ’F; and Dy — “F, emissions.

The fluorescent decay curves in CaMo00,4:0.5% Sm>*, x% Eu>*
(x=0, 1, 2, and 20) are studied for understanding the dynamical
processes in energy transfer. The decay curves Isy(t) for the *Gs,
level of Sm** are measured at 77 K by monitoring *Gsj; — “Hgj2
emission at 650.5 nm as the 4G5/2 level is excited by pulsed laser
at 563.32 nm, as shown in Fig. 4. The lifetimes of Sm®* *Gs/, level
are obtained using the following expression and listed in
Table 1:
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Fig. 3. (A) Emission spectra of (a) CaMo004:Sm>* (Jex =405 nm), (b) CaMoO4:Eu®" (Jex =395 nm) and (c-d) CaMoO4:Eu®*, Sm>* (Jex =395 nm, 270 nm and 405 nm,

respectively); (B) scheme of energy transfer pathway in CaMoO,:Eu**, Sm>*.
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Fig. 4. Decay curves of fluorescence at 650.5 nm corresponding to 4G5,2 - SHQ,Z
transition of Sm3* in CaM004:0.5% Sm>*, x% Eu®* (x=0, 1, 2, and 20) at 77 K.

Table 1
Lifetimes of the “Gsp level of Sm® in CaMo004:0.5% Sm®, x% Eu*
(x=0,0.2,0.5,1, 2,20, and 22) (Zex = 563.32 nm, /e, = 650.5 nm).

Sample CaMo004:0.5 % Sm>*, x % Eu>*
X 0 0.2 0.5 1 2 20 22
T (us) 595 591 572 309 229 138 133

where Iy is the fluorescence intensity at the time t=0. As can be
seen in Table 1, the lifetimes reduce with increasing Eu** content
x, reflecting the effect of energy transfer from “Gsj, level of Sm**
to Eu®*. The decay curve is exponential for Sm** singly doped sam-
ple, i.e. x =0, but non-exponential for Sm*>* and Eu* doubly doped
sample. For the codoped samples, the non-exponential decay is re-
sulted from the inhomogeneous energy transfer rate [17].

After Sm>* is excited into its 4(.'.5/2 state, the energy transfer
from donor Sm** *Gs, to acceptor Eu** Dy occurs. The depopula-
tion of Sm>* can be described by,

Nsm (£) = e~/%sm (1) (2)

with
o0 = [ " fwye dw 3)

where n(t)sy, is the population of *Gs, of Sm** at time t. f{w) is the
distribution function of energy transfer rate w; 7sy, is the intrinsic
lifetime of the 465/2 level, which is determined to be 595 ps from
the exponential decay curve in CaMo004:0.5% Sm>*. ¢(t) denotes
the loss of excited Sm>* ions due to energy transfer to Eu". If the
energy transfer rate between a donor and an acceptor is propor-
tional to an inverse power of the distance r, the rate may be written
as ofr™, where o is the coefficient for the energy transfer, m =6, 8,
10 for dipole-dipole, dipole-quadrupole, and quadrupole-quadru-
pole interactions, respectively. According to Inokuti and Hirayama
formula [18], one has,

¢(t) = exp {— g nl (1 — %) naa3/mt3/m} (4)

where I' (x) denotes the gamma function, 1, is the number of accep-
tors per unit volume. From Egs. (2) and (4), In{—In[nsm(t)]—t/Tsm}
acts as a linear function of In(t) with a slop of 3/m. To understand
the interaction mechanism between Sm>* and Eu®*, the Sm>" fluo-
rescence decay pattern is chosen as nsy(t). Fig. 5a shows the In-In
plot of —In(nsm(t))—t/tsm vs time t for the sample CaM004:0.5%
sm>*, 2% Eu>". It is demonstrated that the slope is more close to
3/6 (red! line) rather than 3/8 (green line) and/or 3/10, indicating
an electric dipole-dipole energy transfer with m = 6. Fig. 5b shows
that the plot of nsm(t)exp(t/tsm) vs ¢/ is a linear pattern with a slop
of 4m32n,0'?3, as described by Eq. (4). From the slop of the linear
pattern, o = 8.5 x 1074%s~! cm® is obtained, where n,, the number
of acceptor Eu** ions per unit volume is given by 2% N, with
Nca = 1.284 x 10?2 cm 3 being the number of Ca sites per unit vol-
ume in CaMoO4 matrix. In CaMoO,, the nearest Ca-Ca distance rg
is 0.3896 nm and a Ca®* ion has four Ca* ions as nearest neighbors.
In the present sample with Eu>* fractional concentration of 0.02, the
initial energy transfer rate due to Sm>" to the nearest Eu>* can be
estimated by 0.02 x 4a/rS, which yields the rate to be

! For interpretation of color in Fig. 5a, the reader is referred to the web version of
this article.
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Fig. 5. (a) In-In plot of —In(nsm(t))—t/Tsm Vs time t in CaMo004:0.5% Sm>*, 2% Eu®* at 77 K; (b) plot of ngy(t)exp(t/tsm) vs t'/? in CaM004:0.5% Sm>*, 2% Eu®* at 77 K.
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Fig. 6. Rise and decay pattern of fluorescence at 615 nm corresponding to Eu®*
Do — ’F, transition in CaM00,4:0.5%Sm>", 2%Eu®" as Sm** “Gs/, level is only excited
by pulsed laser at 563.32 nm at 77 K.

1.9 x 10*s~'. Meanwhile, the initial energy transfer rate obtained
by subtracting the radiative rate from the initial fluorescence decay
rate in the sample with 0.5% Sm>* and 2% Eu®* is 2.0 x 10%s7,
which is slightly larger than the calculated value, indicating that
the nearest Sm>"-Eu3* pairs govern the initial energy transfer.

Owing to Sm®* — Eu?*energy transfer, after pulsed excitation of
Sm3* “Gs/,, the populations of Eu** Dy satisfies the following rate
equation:

dnEu(t)/dt = —nEu(t)/TEu +Wn5m(t) (5)

where ng, is the population of the °Dy of Eu®*, 1, is the intrinsic
lifetime of °Dy. Using Egs. (2), (3), and (5), we obtain

nEu(t) — e*t/TEu /

0
ww

_ e~ WH1/Tsm=1/Ta)t) diy 6
Xw+]/15m71/15u ) (6)

In the case of electric-dipole-dipole interaction with m =6, the
transfer rate distribution function f{w) is written as [19]
21ngol/? 4m3nio

s =G o (- Tgn) @)

Using Eq. (6), a numerical calculation for simulating the rise and
decay pattern of fluorescence from °D, of Eu** in CaMo00,:0.5%
Sm>*, 2% Eu>* is perfectly performed, as shown in Fig. 6. In the cal-
culation, tg, =470 ps is applied, which is obtained from the expo-
nential decay pattern of Dy — ’F, fluorescence in 2% Eu>* singly
doped CaMoO,. As one can see, the decay curve of Eu®* °Dy level

is composed of a rising edge starting from zero and a falling decay.
It indicates that the populations of °Dg level of Eu* are completely
fed by Sm®* “Gs, through energy transfer.

4. Conclusions

In CaMo0,:Sm**, Eu®*, when the *K;;j, of Sm** is excited, the
excited “Kyj, relaxes down to the *Gsp; of Sm*" itself rather than
transfers to Eu®*. The Sm>*" — Eu®' energy transfer performs
through the pathway from Sm** *Gsy; state to Eu** °Dy state rather
than Eu®* °D; state. The electronic dipole-dipole interaction be-

tween Sm3* and Eu®" governs the transfer dynamical processes

with the coefficient for the energy transfer of 8.5 x 1074°s~! cm®.

As the *K;1j, of Sm** is only excited, the fluorescent rise and decay
pattern of Eu®* 5Dy state is well simulated based on Sm** — Eu®*
dipole-dipole energy transfer model.
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