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1. Introduction

A main issue in pattern recognition is to find the invariant with
respect to geometric transform, such as: rotation, scaling and
translation. Moment invariants can deal with such geometric
transform. The pioneering work of moment invariants was done
by Hu [1] as image recognition features which had the property of
being invariant under such geometric transform. Since then,
various types of moment functions are constructed, such as
complex moment [2], Legendre and Zernike moments [3], pseudo-
Zernike moments [4], Chebyshev-Fourier moments [5], Racah
moments [6], dual Hahn moments [7], and so on. Besides, some
excellent works have made outstanding contribution to the
theory of moment invariants [8-13].

However, we are concerned of the Fourier-Mellin moments,
which were first introduced in optical research community
[14,15]. Shortly, Fourier-Mellin descriptor was presented in
[16-18] for image processing. In [19], orthogonal Fourier-Mellin
moments were introduced based on a set of radial polynomials.
There is also a group of excellent works associated with Fourier—
Mellin moments [20-23]. But, Fourier-Mellin moments used in
the papers mentioned above are dealt with gray-level images,
none of them processing color images. In this study, we general-
ized the traditional Fourier-Mellin moments from real and

* Corresponding author at: Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Science, Yingkou Road No. 88, Economic and
Technology District, Changchun, Jilin Province, 130033, China.

Tel.: +86043186176557; fax: +86043185893419.
E-mail addresses: math_circuit@qq.com (L.-Q. Guo), zhu_mingca@163.com
(M. Zhu).

0031-3203/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2010.08.017

complex numbers to quaternion algebra. Quaternion Fourier—
Mellin moments (QFMMs) for describing color images were
proposed.

Registration is a fundamental task in image processing to
match two or more images of the same scene taken at different
times, from different viewpoints or by different sensors. Tradi-
tional image registration methods are dealt with gray-level
images, such as correlation methods [24,25], feature-based
methods [26-30], methods that use the frequency domain
[31-33], and so on. We study the application of QFMMs into
color image registration and propose an algorithm for the
alignment of color images differing in rotation and scaling.

The paper is organized as follows. First, in Section 2 we give a
brief introduction of quaternion and quaternion Fourier transform
(QFT). Then, in Section 3 we introduce the quaternion Fourier-
Mellin moments and its invariants for rotation, scaling and
translation of color images. In addition, we discuss the method
of color image registration using QFMMs in Section 4. Moreover,
experimental results are described in Section 5. Finally, conclu-
sions are made in Section 6.

2. Preliminaries
2.1. Quaternion

The quaternion, which is a type of hypercomplex number, was
formally introduced by Hamilton in 1843 [35]. It is a general-
ization of complex number. We know that a complex number has
two components: the real part and imaginary part. However, the
quaternion has four parts, that are, one real part and three
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imaginary parts. For a quaternion g, which can be written in a
hypercomplex form as follows: q=gq,+qii+q;+qik, where g, q;, g;,
gk are real numbers and i,j,k are complex operators obeying the
following rules:

i2=j2=l€2=—1, ij:—ji:k, jk:—kj:i, kl:—lk:] (1)

From Eq. (1), we find that the multiplication rule of quaternions is
not commutative.

Sometimes, a quaternion is considered as the combination of a
scalar part and a vector part: g=S(q)+V(q), where S(q)=q,
V(q)=qii+q;+qkk. If a quaternion q has a zero scalar part (g,=0),
then q is called pure quaternion, and if ¢ has a unit norm (ligll = 1),
then g is called unit pure quaternion.

The conjugate of a quaternion q is: q = q,—q;i—q;j—qk. For any
two quaternions p and q, then: p-q=¢q -p.

The norm of q is: llgl = \/q-q = \/q?+q? +q? +4a}-

In [34], Sangwine proposed to encode the three channel
components of an RGB image on the three imaginary parts of a
pure quaternion. In other words, a pixel at image coordinate (m,n)
in an RGB image can be represented as

f(m,n) = fr(m,nyi+fe(m,n)j+fp(m,mk 2

where fr(m,n), fg(m,n) and fg(m,n) are the red, green and blue
components of the pixel, respectively.

Euler’s formula holds for quaternions, that is, e** = cos(¢)+
Lt - sin(¢). We also have: llet? | =1.

The quaternion g can be represented in polar form: q = liglle®?,
where u and ¢ are called eigenaxis and eigenangle, respectively. u
and ¢ are computed by: pu=V(q)/IV(Q)l, ¢ =arctanlV(q)l/S(q).
For a more complete discussion about the properties of quater-
nion can be found in Ref. [35].

2.2. Quaternion Fourier transform

As the generalization of traditional Fourier transform, quater-
nion Fourier transform was first defined by Ell to process
quaternion signals [36]. Later, some constructive works related
to quaternion Fourier transform and its application in color image
processing are presented in [37-42]. From last subsection, due to
the noncommutative property of quaternion multiplication, there
are three different definitions of two-dimensional quaternion
Fourier transform as follows:

FO(w,v) = / / e M @XFWf(x vy dx dy 3)
FO(w,v) = / / fxy)e f@x+wW) dx dy 4)
F“’(a),v):/ / e MO f(x,y)e 2 dx dy (5)

where p; and pu, are two unit pure quaternions that are
orthogonal to each other. The three QFTs are defined by placing
the integral kernels e=#1®“* and e~#2"Y on the left side, right side
and one on two sides of a quaternion signal f(x,y). Therefore,
FO(ew,v), FO(w,v) and FO(w,v) are called left-side, right-side and
two-side QFT, respectively.

3. Quaternion Fourier-Mellin moment invariants
3.1. Quaternion Fourier-Mellin moments (QFMMSs)

Let f(r,0) be the gray-level image in polar coordinates, the
traditional Fourier-Mellin moments of f(r,0) were defined as

follows:

0 2n
M, = / / r~le~10f(r,0)dO dr (6)
Jr=0J0=0

Enlightened by the definition of Fourier-Mellin moments,
we combined the one-dimensional quaternion Fourier transform
with Mellin transform to define the quaternion Fourier—Mellin
moments.

Definition 1. Let f(r,0) =fr(r,0)i+fc(r,0)j +fp(r,0)k represents an
RGB image defined in polar coordinates, the (m+n)th order left-
side quaternion Fourier-Mellin moments of f(r,0) are given by

oo 2T
QFM[f(r,0); pl(m,n) = / . /0 _Or'"-le—ﬂ""f(r,e)dedr (7)

where m, n are positive integers and u is any unit pure quaternion,
for example: u=1i, u=j, u=k, = 2/2)i+2/2)k, u=(/3/3)i
+(/3/3)ji+(/3/3)k, etc.

Similar as the definition of quaternion Fourier transform, the
right-side quaternion Fourier-Mellin moments are defined by
placing the integral kernel e=#"’ on the right side of f(r,0):

oo 2n
QFM,If(r,0); pel(m,n) = / . /0 e dodr ®)

In Section 2.1, we have known that for any two quaternions p
and g, then p-q =¢q - p. We will use this anti-involution property
of quaternion conjugation to establish the relationship between
left-side and right-side QFMM s for the same color image f(r,0):

oo 2n
QFM,[f (r,0); pl(m,n) = / S /0 Y rm=1f(r,0)e=*"0 do dr

=S} 2n
- / / rm—te-0 . F(r,0) do dr
r=0J0=0

0 2n
- / / rm-Tend . F(r,0) dO dr
r=0J60=0
= QFM[f(r,0); —ul(m,n) 9

Eq. (9) indicates that we can compute right-side QFMMs through
left-side QFMMs. From Eq. (9) and experimental results in Section
5.4, we can conclude that left-side and right-side QFMMs are
equivalent to describe similarity transforms of color image. In this
paper, the quaternion Fourier-Mellin moments refers to left-side
QFMMs and denoted as “Q,,,"” for abbreviation.

The similarity] transform of a color image consists of rotation,
translation and uniform scale transform. Suppose f(x,y’) is the
transformed replica of original image f(x,y). We can use a matrix
equation to represent similarity transform as follows:

X cosp —sing\ [ x Ax
y | =% sing cosp J{y )T\ Ay (10)

where a is the scale factor with a > 0, ¢ is the rotation angle, Ax
and Ay are the translation offset along x- and y-axes, respectively.

3.2. Rotation invariance
Let f(r,0+ @) denotes the rotation change of a color image

f(r,0) by the angle ¢, then quaternion Fourier-Mellin moments of
f(@r,0+ @) and f(r,0) have the following relations:

00 2n
Qmn= / / rm=le=#0fr 0+ @) d0 dr
r=0J0=0

0 2n
— oo / / rm=1e=10f (. 0) d0 dr
Jr=0J0=0
=e""?Qmn an
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where Q';mn and Qn, are the QFMMs of f(r,0+¢) and f(r,0),
respectively.

According to Eq. (11), we know that a rotation of the color
image by an angle ¢ induces a phase shift e#"? of the Q,,,. Taking
the norm on both sides of Eq. (11), we have

1Q mnll = 11€672 Qpy ll = 17991 - | Q| = | Qi (12)

So, the rotation invariance can be achieved by taking the norm of
the color images’ QFMMs. In other words, @m,=I1Qmnall are
invariant with respect to rotation transform.

3.3. Scale invariance

Suppose f(ar,0) be the color image expanded by the scale
factor a, then the following equation holds:

~00 21
Qmn= / / rm’le’“”(’f(ar,()) dodr
Jr=0J0=0

o0 2n N\ m—1 1
= — —unf I
_/rzo/@:o(a) e M"f(r,0) dodr

oo 2n
—a™m / / rm-le=tn0f(r 0)d6 dr
r=0J0=0
= a_QO.n (13)

where Q'mn and Q. are the QFMMs of f(ar,0) and f(r,0),
respectively.

If n=0 in Eq. (13), we have: Q'mo=a"™Qno. The scale
invariants can be constructed as follows:

_ Qmn _ a "Qmn _ %

DPn= = =
™7 Qmo  @™Qmo  Qmo

(14

The value of scale invariant is a quaternion. For any two
different quaternions, we cannot compare them directly, but we
can compare the norm of the invariants of different scaling color
images.

We can construct rotation and scale invariants as follows:

¢m,n = '

Qo (15)
Analogously, @y =Qmn/(Q20)™?Il are also invariant under
rotation and scale transforms.

3.4. Translation invariance

Translation invariance is achieved by putting the origin of
coordinates at the color image centroid. First, we give the
definition of the centroid of color image in Cartesian coordinates:

Definition 2. Let f(x,y) be a color image, then the centroids of x-
and y-coordinate, X and y, respectively, are defined as follows:

SN xIf )l S yIfEp)l
Sy Ifayl S S If )l

X = y= (16)

Let f(x,y) and f(x',y’) denote the color image and its translated
replica, respectively, where x' =x+Ax, y=y+Ay and f(x,y)=
f(x'y), then

M N
Yx—1 2y 1 XA xY)I X AXTAX — XX

X—x =x+Ax—
Exle Zﬁ':l Ifxp)l

a7)

Similarly, we have: y'—y” = y—y. Therefore, if we put the origin of
coordinates at the color image centroid, the rotation and scale

invariants constructed in the last subsection also have the
property of being invariant under translation transform.

3.5. Numerical computation of QFMMs

The discrete form of QFMMs are given by

Tmax 2T

Qua=Y_ > ™ e f(r,0)A0Ar

r=00=0

T'max
— 2 :rm—l
r=0

2n
> e‘””"f(r,@)AH} Ar (18)

0=0

The expression in square brackets of Eq. (18) can be seen as a
discrete form of one-dimensional QFT with respect to variable 0,
we can use the “gfft” function in Quaternion Toolbox for Matlab to
fast computation of that part [43].

In the computation of QFMMs of a color image f(x,y), we should
first put the origin of Cartesian coordinates at the color image
centroid, then change the color image from Cartesian coordinates
to polar coordinates. The following step is to compute the QFMMs
using Eq. (18). The detailed calculation steps are as follows:

Step 1: Calculate the centroid of color image f(x,y) use Eq. (16)
and put the origin of coordinates at the centroid.

Step 2: Calculate the “rpe”, “ Ar” and “ A0”
following equations:

max = Max{y/ x—X* +y-y)’1x=1,2,...,.M; y=1,2,...,N},

Tmax _ 2=m
" ntheta

using the

Ar= nrad—1’

where the image size is M x N pixels, “nrad” and “ntheta” are
the number of radius and angle value in polar coordinates,
respectively.

Step 3: Change the color image from Cartesian coordinates to
polar coordinates, we get f(r,0).

Step 4: Calculate the QFMMs of f(r,0) using Eq. (18).

4. Color image registration

This section presents a method of color image registration
based on QFMM for computing transformation parameters from
two images that differ by rotation and scale changes.

Let f(ar,0+ @) be the color image expanded by the factor a and
rotated by the angle ¢, then quaternion Fourier-Mellin moments
of f(ar,0+ ¢) and f(r,0) have the following relations:

) 2n
Qmn= / / rm=le=t0f (ar,0+ @) dO dr
Jr=0J0=0

00 2n
— g metne / / Pt e~ k0F (. 0) dO dr
r=0J0=0
=a "e!?Qmn (19)

Let m=1 and n=1, then we can use Eq. (19) to derive the
rotation angle ¢, that is,

_ Qi _ alerQ,
Qi1 Q11
we can get the rotation angle ¢ through computing the real or

imaginary part of @ using inverse trigonometric function.
Using Eq. (19), we can also get the scale factor a as follows:

Q1,1
Q11

=a'e'? =a'(cos(p)+p-sin()  (20)

3
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Some important implementation details are presented here to
estimate the parameters of rotation and scale transformations:

(1) The origin of polar coordinates is in the color image center
(M/2,N/2).

(2) When we estimate the rotation angle, the “r;,,q" in Eq. (18)
is computed as follows:

2 2
rmax=rnax{ <x7¥> +<y7g> |x=1,2,...,M;y=1,2,.4.,N}

(22)

(3) When we estimate the scale factor, the computation of
“I'max " 1S given by

. (M N
rmaxzmm{j—l,j—l} 23)

Once the rotation and scaling parameters are determined, we
can match the two color images using the inverse transforms and
interpolation algorithms. The experimental results are shown in
the next section.

5. Experiments

This section is intended to validate the effectiveness of the
proposed QFMM invariants under similarity transform for color
images. We also present the experimental results for registration
performance of the proposed algorithm with traditional

FFT-based method. In the following subsections, we specify the
unit pure quaternion p=+/2/2-i++/2/2 -k to compute QFMMs,
and compute lower order QFMM invariants using Eq. (15). The
program was implemented in Matlab 7.5 on a PC DuoCore
2.2GHz, 4G RAM.

5.1. Experiment on rotation invariance

We first evaluate the performance of the QFMM invariants
under rotation transform. The original color image we used is
selected from the Coil-100 image database of Columbia University
[44]. The original and rotated images are shown in Fig. 1, where
car_r0 is the original image, from car_r1 to car_r7 are the rotated
version of original one. All these images are 128 x 128 pixels. The
experimental results can be found in Table 1. Each column in
Table 1 is the values of same moment invariant for different
images; each row is the values of different moment invariants for
the same image. The bottom row is the standard deviation of each
column data to indicate the stability of the moment invariants.

As one can see from Table 1, the QFMM invariants remain
almost unchanged under different rotation changes and most of
the standard deviations are less than 0.02. Therefore, the QFMM
invariants derived in this paper could be a useful tool in color
object recognition tasks that require the rotation invariance.

5.2. Experiment on scale invariance

The goal of this subsection is to evaluate the performance of
the QFMM invariants under scale transform. The original color
image is car_s0O, others are the scaled version of original one.

(ol gy

car_r0: ¢ =0° car_r1: ¢=35°

S Ern

car_rd: ¢ =180° car_r5: ¢ = 230°

car_r2: ¥ =90° car_r3: ¥ = 140°

car_r6: ¢ = 270° car_r7: ¢ = 325°

Fig. 1. The original color image and its rotated version for rotation invariance tests.

Table 1
QFMM invariants of the same color image under rotation.

D11 D1 D1 (2% Dy3 D3 D34 78] Dy Py
car_r0 0.1251 0.1865 0.0945 0.1672 0.0521 0.1046 0.0465 0.0255 0.0291 0.0234
car_rl 0.1332 0.1995 0.1177 0.1799 0.0617 0.1130 0.0548 0.0406 0.0344 0.0248
car_r2 0.1751 0.1473 0.1139 0.1623 0.0561 0.1127 0.0542 0.0327 0.0193 0.0090
car_r3 0.1391 0.1604 0.0771 0.1549 0.0238 0.1013 0.0500 0.0114 0.0090 0.0080
car_r4 0.1251 0.1865 0.0945 0.1672 0.0521 0.1046 0.0465 0.0255 0.0291 0.0234
car_r5 0.1438 0.1843 0.1160 0.1784 0.0550 0.1164 0.0589 0.0406 0.0289 0.0182
car_r6 0.1751 0.1473 0.1139 0.1623 0.0561 0.1127 0.0542 0.0327 0.0193 0.0090
car_r7 0.1271 0.1610 0.0690 0.1556 0.0212 0.1014 0.0498 0.0109 0.0138 0.0122
Stand. dev. 0.0209 0.0200 0.0189 0.0093 0.0156 0.0060 0.0044 0.0117 0.0088 0.0072
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The scale factors from car_s1 to car_s7 are 0.2, 0.4, 0.6, 0.8, 1.3,
1.6, 2.0, respectively. The images and experimental results are
shown in Fig. 2 and Table 2, respectively.
As it can be seen from Table 2, the proposed QFMM invariants
remain almost unchanged under different scale transformations.
Therefore, the QFMM invariants could also be a useful tool in color
pattern recognition tasks that require the scale invariance.

Table 2

5.3. Experiment on translation invariance

191

The experiment is carried out in this subsection to evaluate the

effectiveness of the QFMM invariants under translation transform.
A car image is shifted up, down, left and right within the image frame.
The images are shown in Fig. 3. The QFMM invariants are calculated
for each translation, and the results are depicted in Table 3. It can be

car _s0:

128 x 128

 —

car_s4: 102 x 102 car

car_sl: 26 x 26

—

_s5: 166 x 166

car_s2: 51 x 51

_

car_s6: 205 x 205

-

car_s3: 77 x 77

car_s7:

 —

256 x 256

Fig. 2. The original color image and its scaled version for scale invariance tests.

QFMM invariants of the same color image under scaling.

Dy D1 Dy (2% D3 D3, D34 Dy Dy 3 Dy
car_s0 0.1338 0.2087 0.1238 0.2276 0.0716 0.1896 0.0882 0.0499 0.0584 0.0511
car_s1 0.1361 0.2059 0.1314 0.2282 0.0774 0.1904 0.0902 0.0628 0.0704 0.0598
car_s2 0.1342 0.2077 0.1248 0.2285 0.0727 0.1910 0.0899 0.0510 0.0602 0.0531
car_s3 0.1338 0.2083 0.1237 0.2277 0.0712 0.1897 0.0889 0.0492 0.0577 0.0505
car_s4 0.1466 0.2132 0.1627 0.2540 0.1068 0.2318 0.1297 0.1285 0.1306 0.1117
car_s5 0.1340 0.2092 0.1238 0.2275 0.0714 0.1894 0.0883 0.0493 0.0574 0.0504
car_s6 0.1343 0.2095 0.1242 0.2273 0.0717 0.1889 0.0881 0.0505 0.0585 0.0511
car_s7 0.1344 0.2097 0.1242 0.2271 0.0718 0.1886 0.0879 0.0506 0.0586 0.0511
Stand. dev. 0.0044 0.0021 0.0135 0.0093 0.0123 0.0149 0.0145 0.0274 0.0253 0.0212

car _t0: 128 x 128

car_t1: 128 x 128

car_t2: 128 x 128

car _t3: 128 x 128

car _t4: 128

x 128 car_t5: 128 x 128

Fig. 3. The translated color image for translation invariance tests.

car_t6: 128 x 128

car_t7: 128 x 128
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seen that the QFMM invariants remain almost unchanged for all invariant is less than 0.1, then we can recognize the object

translations and all the standard deviations are less than 0.02. accurately. From the bottom row of Tables 1-3, we can get the
There is no general criterion that can be used to evaluate the conclusions that QFMM invariants are stable under rotation,
stability of moment invariant. According to our experience in scaling and translation changes. Therefore, the QFMM invariants

object recognition, if the standard deviation of the moment derived here could be useful as color image descriptors.

Table 3
QFMM invariants of the same color image under translation.

P11 D1 Py 1 (2P Dy3 [P P34 Dy (2% Py5
car_t0 0.0562 0.0554 0.0611 0.0602 0.0587 0.0508 0.0479 0.0398 0.0383 0.0355
car_t1 0.0723 0.0701 0.0643 0.0624 0.0590 0.0434 0.0380 0.0287 0.0264 0.0220
car_t2 0.0444 0.0433 0.0609 0.0594 0.0569 0.0620 0.0556 0.0597 0.0556 0.0478
car_t3 0.0641 0.0604 0.0631 0.0592 0.0533 0.0444 0.0339 0.0321 0.0267 0.0179
car_t4 0.0664 0.0623 0.0630 0.0593 0.0533 0.0434 0.0340 0.0302 0.0260 0.0193
car_t5 0.0410 0.0398 0.0592 0.0576 0.0550 0.0632 0.0569 0.0641 0.0598 0.0522
car_t6 0.0650 0.0628 0.0633 0.0613 0.0584 0.0471 0.0427 0.0340 0.0321 0.0288
car_t7 0.0507 0.0501 0.0598 0.0591 0.0579 0.0541 0.0518 0.0458 0.0445 0.0421
Stand. dev. 0.0113 0.0104 0.0018 0.0015 0.0024 0.0080 0.0093 0.0136 0.0134 0.0133

Table 4
The right-side QFMM invariants of the same color image under rotation.

P11 D1, Dy (2P D3 P35 P34 Dy Dy3 Py5
car_r0 0.1161 0.1431 0.1044 0.1401 0.0624 0.0940 0.0355 0.0279 0.0309 0.0255
car_rl 0.1315 0.1499 0.1286 0.1560 0.0663 0.1043 0.0424 0.0430 0.0354 0.0264
car_r2 0.1535 0.1613 0.1150 0.1591 0.0375 0.1095 0.0542 0.0345 0.0176 0.0097
car_r3 0.1220 0.1397 0.0791 0.1400 0.0242 0.0947 0.0464 0.0131 0.0115 0.0118
car_r4 0.1161 0.1431 0.1044 0.1403 0.0624 0.0940 0.0355 0.0279 0.0309 0.0255
car_r5 0.1332 0.1617 0.1237 0.1637 0.0517 0.1102 0.0513 0.0427 0.0294 0.0209
car_r6 0.1535 0.1613 0.1150 0.1591 0.0375 0.1095 0.0542 0.0345 0.0176 0.0097
car_r7 0.1108 0.1337 0.0729 0.1367 0.0328 0.0932 0.0444 0.0122 0.0165 0.0158
Stand. dev. 0.0166 0.0111 0.0200 0.0111 0.0159 0.0079 0.0075 0.0118 0.0088 0.0073

Table 5
The right-side QFMM invariants of the same color image under scaling.

D11 D1 (28] (2% D3 D3, D34 Dy Dy3 Dy5
car_s0 0.1286 0.1547 0.1379 0.1878 0.0835 0.1675 0.0606 0.0572 0.0668 0.0624
car_s1 0.1303 0.1528 0.1446 0.1900 0.0879 0.1706 0.0645 0.0688 0.0775 0.0705
car_s2 0.1285 0.1542 0.1392 0.1889 0.0851 0.1688 0.0615 0.0597 0.0698 0.0651
car_s3 0.1285 0.1543 0.1382 0.1877 0.0838 0.1671 0.0604 0.0578 0.0673 0.0631
car_s4 0.1397 0.1629 0.1719 0.2216 0.1103 0.2187 0.1130 0.1299 0.1325 0.1186
car_s5 0.1287 0.1553 0.1378 0.1880 0.0832 0.1678 0.0612 0.0563 0.0657 0.0617
car_s6 0.1289 0.1554 0.1382 0.1876 0.0836 0.1670 0.0607 0.0575 0.0670 0.0628
car_s7 0.1291 0.1556 0.1382 0.1875 0.0836 0.1669 0.0608 0.0575 0.0671 0.0629
Stand. dev. 0.0039 0.0031 0.0118 0.0118 0.0093 0.0180 0.0183 0.0253 0.0228 0.0195

Table 6
The right-side QFMM invariants of the same color image under translation.

Dy Dy Dy D2 D3 D3, D34 Dy 4 Dy3 Dys
car_t0 0.0560 0.0550 0.0609 0.0598 0.0582 0.0505 0.0474 0.0396 0.0380 0.0350
car_t1 0.0720 0.0695 0.0639 0.0615 0.0578 0.0427 0.0365 0.0284 0.0255 0.0206
car_t2 0.0442 0.0429 0.0606 0.0588 0.0560 0.0613 0.0544 0.0593 0.0547 0.0465
car_t3 0.0643 0.0609 0.0634 0.0599 0.0542 0.0451 0.0350 0.0323 0.0274 0.0189
car_t4 0.0659 0.0614 0.0627 0.0586 0.0524 0.0430 0.0336 0.0302 0.0259 0.0193
car_t5 0.0413 0.0404 0.0597 0.0584 0.0562 0.0641 0.0586 0.0646 0.0610 0.0541
car_t6 0.0658 0.0643 0.0639 0.0625 0.0601 0.0478 0.0439 0.0341 0.0325 0.0294
car_t7 0.0507 0.0500 0.0597 0.0590 0.0578 0.0541 0.0516 0.0458 0.0445 0.0420

Stand. dev. 0.0113 0.0104 0.0018 0.0015 0.0024 0.0082 0.0095 0.0137 0.0136 0.0134
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prst4:180 x 180 p_rst5:90 x 90 p_rst6 :150 x 150 p_rst7 : 256 x 256
Fig. 4. The similarity transformed color images for invariance tests.
Table 7
QFMM invariants of the same color image under similarity transform.
D14 Dy (2% D34 D3, D33 Dy Dy Dy Paa

p_rst0 0.2149 0.1493 0.1743 0.1194 0.1661 0.0677 0.1099 0.1560 0.0895 0.0597
p_rstl 0.2182 0.1495 0.0924 0.1280 0.0782 0.0653 0.1260 0.0658 0.0669 0.0255
p_rst2 0.2002 0.1574 0.1200 0.1506 0.1171 0.0410 0.1550 0.1126 0.0389 0.0403
p_rst3 0.1731 0.1235 0.0424 0.1008 0.0432 0.1276 0.0964 0.0437 0.1461 0.0844
p_rst4 0.2254 0.1452 0.0787 0.1292 0.0845 0.0431 0.1349 0.0905 0.0439 0.0446
p_rst5 0.2326 0.1468 0.0244 0.1149 0.0419 0.0437 0.1057 0.0614 0.0465 0.0694
p_rst6 0.2475 0.1467 0.0526 0.1185 0.0597 0.0726 0.1162 0.0646 0.0789 0.0287
p_rst7 0.2351 0.1424 0.0938 0.1066 0.0868 0.0978 0.0985 0.0796 0.1185 0.0924
Stand. dev. 0.0232 0.0098 0.0477 0.0154 0.0412 0.0302 0.0199 0.0357 0.0382 0.0250

Table 8

Traditional FMM invariants of the same image under similarity transform.

D11 (28] (2P D34 D3, D35 Dy (% Dy 3 Dyg

p_rst0 0.2741 0.2234 0.2030 0.1748 0.2225 0.1287 0.1421 0.2292 0.1088 0.0529
p_rstl 0.2888 0.2396 0.1411 0.1922 0.1609 0.0623 0.1635 0.1680 0.0465 0.1105
p_rst2 0.2625 0.2293 0.1338 0.1966 0.1491 0.0372 0.1778 0.1535 0.0342 0.1393
p_rst3 0.2405 0.2358 0.0742 0.2062 0.0875 0.0326 0.1880 0.0927 0.0479 0.1290
p_rst4 0.3413 0.2833 0.0739 0.2284 0.0595 0.0362 0.1888 0.0625 0.0303 0.0794
p_rst5 0.3463 0.2825 0.1055 0.2318 0.1015 0.0276 0.1972 0.0962 0.0097 0.0870
p_rst6 0.3582 0.2866 0.0429 0.2310 0.0439 0.0419 0.1938 0.0535 0.0311 0.0897
p_rst7 0.3289 0.2630 0.1243 0.2087 0.1339 0.0637 0.1713 0.1423 0.0520 0.0753
Stand. dev. 0.0441 0.0264 0.0500 0.0207 0.0586 0.0330 0.0184 0.0594 0.0291 0.0289

¢ =5°
a=0.7

Fig. 5. The color images of simulated misalignment by rotation and scaling.

@ =10°
a=15

¢ =10°
a=0.7

@ =85°
a=15

@ =85°
a=0.7



194 L.-Q. Guo, M. Zhu / Pattern Recognition 44 (2011) 187-195

Table 9
The RMS error of rotation angle and scale factor for 34 simulations.

RMS errors QFM-based FFT-based
Rotation RMS 0.7227 0.7595
Scaling RMS 0.0108 0.0181

Fig. 6. The registration of color images with rotation and scaling.

5.4. Experiment on the similarity invariance using right-side QFMM
invariants

In this subsection, we use right-side QFMM to construct
invariants in Eq. (15), and experiment on the pictures in the last
three subsections. The corresponding results are shown in
Tables 4-6, respectively. As we can see from the above three
tables, the right-side QFMM invariants remain almost unchanged
under rotation, scaling and translation changes. Eq. (9) indicates
that we can compute right-side QFMMs through left-side QFMMs,
then we can get the conclusions that the left-side and right-side
QFMM invariants are identical to describe the similarity trans-
form of a color image. Therefore, the right-side QFMM invariants
could also be a useful tool in color pattern recognition tasks that
require rotation, scale and translation invariance.

5.5. Experiment on similarity invariance

In this subsection, we consider the situation of rotation, scaling
and translation changes at the same time for real color images.
The original image is downloaded from the Website [45], the
similarity transformed versions are shown in Fig. 4 and the
experimental results are depicted in Table 7. In order to compare
the proposed technique to older methods, we change the color
images to gray-level one, and compute the traditional Fourier—
Mellin moment invariants. The experimental results are shown in
Table 8.

Table 7 shows the QFMM invariants remain almost unchanged
under different similarity transforms. Compared with Table 8,
most of the QFMM invariants are stable than corresponding
one. Therefore, the similarity invariants based on QFMMs per-
form better than those derived from traditional Fourier—-Mellin
moments.

5.6. Experiment on color image registration

In this subsection, we present the experimental results for
registration performance of the proposed method compared
with traditional FFT-based one. The efficiency of the proposed
registration algorithm can be evaluated by simulating a misalign-
ment between two color images. When the rotation and scaling
parameters between two images are known, the error produced
by the registration algorithm can be quantified. The original color
image is 128 x 128 pixels, 34 simulated replicas of rotation and

scaling were generated in the following way: the image is rotated
from 5° to 85° and increased by 5°, then for each rotated image,
we expand them by the scale factor 0.7 and 1.5, respectively. Fig. 5
shows six of these simulations. Experimental results of our
method compare with FFT-based one under the measure of
root-mean-squared (RMS) errors are given in Table 9. As
experimental results show, the precision of the parameters
estimated using our method is better than FFT-based one.

In Fig. 6, () is the reference image; (b) is taken from (a); (c) is
scaled and rotated version of (a) with rotation angle 20° and scale
factor 1.5; the estimated parameters using QFMM  are:
@ =20.3852, a=1.5033; (d) is recovered from (c) using estimated
parameters; (e) is the result of overlying of the images (a) and (d).
As it can be seen from Fig. 6, our method is suitable for
registration of color image with rotation and scaling changes.

6. Conclusions

In this paper, we proposed the quaternion Fourier-Mellin
moments and constructed the similarity invariants of color
images. We also investigated the method of color image
registration using QFMMs. The experimental results show that
our method is better than traditional one which was dealing with
gray-level images. In addition, the main advantage of our method
is that it can process color image directly, without losing color
information. Our future work will focus on the use of QFMM
invariants for the application of color object recognition.
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