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Abstract—Recently, landmarks count heuristic can increase 
the number of problem instances solved and improve the 
quality of the solutions in satisfying non-optimal planning.  
In order to make landmarks count heuristic optimal, we 
give the solution to the overestimate of landmarks count 
heuristic. We extend landmarks count heuristic without 
action cost assignments, and prove that the extension of 
heuristic is admissible. Our empirical evaluation shows that 
the extension of heuristic is admissible and can be competed 
with the state-of-the-art of heuristic.  
 
Index Terms—artificial intelligence, intelligent planning, 
planning with landmarks, planning heuristic  
 

I.  INTRODUCTION 

Landmarks are facts that must be true at some point 
during the execution of any solution plan [1]. For 
example, clear(B) is a landmark for the task where the 
goal is to have block B stacked on block C, with another 
block A stacked on block B initially. Deciding landmark 
and finding the orderings between two landmarks are 
both PSPACE-complete [2]. Still, there are polynomial 
time algorithms for discovering and ordering landmarks 
such as the approach proposed by Hoffmann based on 
relaxed planning graphs [2], and the approach proposed 
by Richter based on domain transition graphs [3]. 

Currently, landmarks have been used in different types 
of planners. The roles which landmarks act as are 
different, such as preconditions sorting [4], guiding 
search [5], and planning heuristic estimators [6]. 
Landmarks and their orderings are extremely helpful in 
guiding the search for a plan. In particular, LAMA 
planner [7], the winner of the Sequential Satisfying Track 
at the 2008 International Planning Competition, utilizes 
such a landmarks-based heuristic, which is landmarks 
count heuristic. This technique uses the number of 
landmarks to estimate the goal distance of a state. As a 
result, this technique improves success rate and reduces 
the length of the generated plans. At the other hand, this 

heuristic is not optimal within a satisfying heuristic 
search.  

In order to derive admissible heuristic estimates for 
optimal planning from a set of landmarks, Earpas and 
Domshlak propose cost-optimal heuristic with landmarks 
[8]. This approach allocates the cost of each action to the 
landmarks occurring in the action’s effects. The core of 
this admissible heuristic is the cost assignment equations. 
Different assignment techniques cause different results. 
As long as the assignment technique follows the 
equations, the landmark heuristic which adopts the 
assignment technique is admissible. At the other hand, it 
takes times to compute the assignment costs and the 
choice of assignment techniques is another deliberate 
decision. 

In this work, we depart landmarks from cost 
assignments and consider planning landmarks without 
cost assignments for admissible heuristic. We extend 
landmark count heuristic to make it admissible. And then 
the proof of this admissible heuristic is presented. Our 
empirical evaluation shows that this extension of heuristic 
has better performance in certain planning domains. 

II.  NOTATION AND BACKGROUND 

We consider planning in the SAS+ planning formalism 
[9] which can be automatically generated from its PDDL 
description [10, 11]. An SAS+ planning task is a tuple 
( 0, , ,V s G A ). 1{ ,..., }nV v v=  is a set of state 

variables, each associated with a finite domain ( )idom v . 

A fact is a pair ,v d< >  (an assignment v d= ) with 
v V∈  and ( )d dom v∈ . The union of the variable 

domains ( )i iF dom v= ∪  is the set of facts. A state s  

is a complete assignment defined on all variables V . We 
use the function notation ( )s v d=  and set notation 

( , )v d s∈  interchangeably. 0s  is an initial state, and the 

goal G  is partial assignment to V . A  is a finite set of 
actions, where each action is a pair ( pre , eff ) of partial 
assignments to V , called preconditions and effects, 
respectively. An action a  is applicable in a state s  if 
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pre s⊆ , produces the result state 's  with 
'( ) ( )s v eff v=  where ( )eff v  is defined and 
'( ) ( )s v s v=  otherwise. We write [ ]s a  for 's . In a 

similar way, we write [ ]s π  with 1,..., na aπ =< >  as 

an abbreviation of 1[ ]...[ ]ns a a  if each action is 
applicable in the respective state. The action sequence π  
is a plan if 0[ ]G s π⊆ . 

We use the data structure Landmarks Graph for 
deriving heuristic. The landmarks and the orderings 
among them form Landmarks Graph. Most practical 
methods for finding landmarks are incomplete or unsound 
[1, 2, 3, 12, 13]. In what follows, we assume access to a 
complete and sound procedure; particularly, in our proof. 
We use LAMA’s landmark discovery procedure, 
introduced by Richter et al in the experiments [3].  

There are three types of orderings between landmarks 
in Landmarks Graph: natural ordering, necessary 
ordering, and greedy-necessary ordering. Let A and B be 
facts of an SAS+ planning task. If B is true at time i, A is 
true at some time j<i in each action sequence, there is a 
natural ordering between A and B, written A B. If B is 
added at time i, A is added at time i-1 in each action 
sequence, there is a necessary ordering between A and B, 
written A n B. If B is first added at time i , A is true at 
time i-1 in each action sequence, there is a greedy-
necessary ordering between A and B, written A gn B. 
Hoffmann et al. introduce another two types of orderings: 
reasonable ordering and obedient reasonable ordering, 
which are less important to our work. The most 
representative methods for computing these orderings 
utilize relaxed planning graph or domain transition graph. 
We use both of them to derived orderings [7]. 

III.   PREVIOUS HEURISTIC WITH LANDMARKS COUNT 

The most straightforward way of landmarks count 
heuristic is to estimate the goal distance from current 
state without using the number of actions for performing. 
Instead, it utilizes the number of landmarks to estimate 
the goal distance. The heuristic believes the assumption: 
each landmark is reached by an action and landmarks 
must be achieved by any plan. The number of actions 
need to be performed, approximately equals the number 
of landmarks in set l  that still need to be achieved from 
current state onwards. l  is estimated to be ( )n m k− − , 
where n  is the set of landmarks, m  is the set of 
landmarks that have been accepted, and k is the set of 
accepted landmarks that are required again.  

It is not hard to verify that the estimate is not 
admissible. For instance, in a BLOCKWORLD task, the 
goal is {hand-empty, on(A, B)}. n ={clear(A), clear(B), 
hand-empty, holding(A), on(A,B)}, m ={clear(A), 
clear(B), hand-empty, holding(A)}, k={hand-empty}, l  
= {hand-empty, on(A,B)}. While the equation | | 2l =  
holds, it is possible a single action stack(A, B) reaches 
the goal from current state. 

Landmarks count heuristic is not admissible, is caused 
by three approximate processes. The first approximation 
is that the number of landmarks left to reach is used to 
replace the number of actions left to perform. The second 
approximation is that the total number of n  is obtained 
by incomplete or unsound practical methods. So the 
number of m  is not accurate either, because m  is 
computed from n . The third approximation is that k  is 
computed by incomplete methods which only consider 
greedy-necessary orderings. Below, we show that the gap 
between the estimate and admissibility is not that hard to 
close. 

IV.   ENHANCING LANDMARKS COUNT HEURISTIC  

A.  Theories 
In this part, we contribute to extend landmarks count 

heuristic to make it admissible without considering other 
elements except landmarks.  

The first approximation is the key of landmarks count 
heuristic. However, the number of actions that need to 
perform is not always equal to the number of landmarks 
left to reach. In some tasks, the number of actions is 
greater than the number of landmarks. In another tasks, it 
is opposition. Thus, the first approximation needs 
enhancing. If the number of landmarks left to reach is less 
than or equals the number of actions that need to perform, 
the heuristic is admissible. If the number of landmarks 
left to reach is greater than the number of actions that 
need to perform, the heuristic fails to be admissible. This 
condition takes place, when there is at least one action to 
perform which makes two or more new landmarks be true 
at the same time. Thus, how to estimate the number of 
actions that need to perform more accurately, according 
to the set of landmarks is the key problem of enhancing 
landmarks count heuristic. 

In order to solve this problem, there are another two 
questions need to answer. One is how to deal with the 
actions. Each action of them adds several landmarks at 
the same time. The other is how to deal with the 
landmarks. Each landmark of them can be added by 
several different actions. These two questions are 
answered by two admissible cost assignment equations in 
literature [8] for an admissible heuristic with landmarks. 
However, these equations give the range too wide. 
Sometimes the induced action cost partition adopted by 
some problem that obeys the admissible equations can be 
sub-optimal. Thus, it is necessary to limit the admissible 
equations more definitely. Or another way is provided. 

Whatever relationships between landmarks and actions 
are, one landmark is added by one action at each time 
step. We call this action is the correspondence action of 
this landmark. When there are some actions that add the 
same one landmark, we choose the action which adds the 
largest number of new landmarks as the correspondence 
action of this landmark. New landmarks are the 
landmarks which belong to the set n m− . We update the 
correspondence action of other landmark that is added by 
this action with this action. Last, we utilize the number of 
correspondence actions of the landmarks in the set 
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Compute_Enhancing_Heuristic(state) 
{        reached_lms_num = state.get_reached_landmarks(reached_lms); 

n_m = lgraph.nodes - reached_lms; 
i=0; 
for each action a  in A   
{        i++; 

ta=0; 
for each ,i iv d< >  in .a eff   

{     if ,i iv d< >∈lgraph.nodes and ,i iv d< >∈n_m, 
then  ta++;   

operator_affect_lms[i].insert( ,i iv d< > );   
} 
operator_ta.push_back(ta); 
if  ta>0 
then  for each LandmarkNode L in operator_affect_lms[i]  

{    if(L.ta < ta) 
then  L.operator_index = i; 

L.ta = ta;   
}      

} 
for each LandmarkNode L in n_m  
{    if  L.ta >0 

then  r.insert(L.operator_index);  
} 
h = r.size(); 
return h; 

} 

n m−  as the enhancing landmarks count heuristic 
estimator. We do not compute the number of 
correspondence actions of the landmarks in the set 
l n m k= − + , because the landmarks of the set k  are 
mostly the byproducts for adding landmarks of the set 
n m−  and usually k  is 0 or very small.  

The second approximation is caused by the practical 
methods. When landmarks count heuristic is proposed, 
there is no guarantee that the generated landmarks are 
complete. However, there is guarantee that the generated 
landmarks are sound with rapid speed. Although 
complete algorithm for finding landmarks allows the 
heuristic to be more accurate, it costs much time for large 
tasks. Complete algorithm fits for small tasks.  

The third approximation is caused by unsound ordering 
between landmarks. The types of orderings between two 
landmarks are few and there are no guarantees of 
soundness for them. So k  is computed by only 
considering greedy-necessary orderings which are more 
accurate than any other orderings. Although k  is not 
accurate, it does not affect the admission of heuristic. It is 
because the smaller k  is, the smaller l  is. 

B.  Algorithm Specification 
In this part, we give the admissible heuristic estimate, 

named enhancing landmarks count heuristic, as shown in 
(1). The symbol L  represents certain landmark of the set 

n m− . The symbol La  represents the correspondence 

action for the landmark L . The landmark L  chooses the 
action La as its correspondence action because the effect 

of La  contains the largest number of landmarks in the set 

_n m . At the same time, these landmarks added by La  
have the same correspondence action, except the 
landmark 'L  which have another action 'a  as its 
correspondence action because action 'a  adds more  
landmarks of the set _n m  than La . Equation (1) 

considers the number of actions in the union set of La  
for all landmarks of the set n m− . 

 

| |E
L

L n m

h a
∈ −

= ∪ .                         (1) 

 

Overall, our algorithm for computing enhancing 
landmarks count heuristic works as specified in Fig. 1. 
With what was said above, the algorithm should be self-
explanatory. The input parameter “state” represents 
current state. The symbol “lgraph” is the data structure 
Landmarks Graph. This algorithm uses the functions 
“get_reached_landmarks”, which are defined in the class 
“State”, for getting the landmark set m . The data 
structure, the class and the function are the techniques 
from LAMA planner. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Enhancing landmarks count heuristic. 
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C.   Admissibility Proof 
In this part, we prove the enhancing landmarks count 

heuristic admissible. The proof uses reduction to 
absurdity. Firstly, the assumption “enhancing landmarks 
count heuristic is not admissible” is provided. Then, a 
contradiction is inferred. Thus, the assumption does not 
hold. Proposition proves correct. 

Proposition 1: If the generated landmarks and 
orderings are complete and sound, enhancing landmarks 
count heuristic is admissible. 

Proof sketch is as follows. Assume enhancing 
landmarks count heuristic Eh  is not admissible. That is 
the estimate | |E

L
L n m

h a
∈ −

= ∪  of the state s  in a planning 

task ( 0, , ,V s G A ) is greater than the action number 
*( )h s  of the best action path 1,..., pa aπ =< >  from 

s  to the goal G  with [ ]G s π⊆ . There are two types 
of relationships between the number of actions in path π  
and the number of landmarks in n . They are | | | |nπ ≥  
and | | | |nπ < . If | | | |nπ ≥  holds, there is no doubt that  

*( ) ( )Eh s h s≤  holds, because one landmark is at most 
added by one action at each time step with 

| |E
L

L n m

h a n m
∈ −

= ≤ −∪ . Only need to consider the 

condition | | | |nπ < . The relationship between each 
action a  of π  and landmarks may be 1:0, 1:1 or 1:n. For 
the condition | | | |nπ < , the case is that some actions add 

more than one landmark. For the set of landmarks, Eh  
obtains the least number of actions for achieving them. If 
the generated landmarks and orderings are complete and 
sound, the landmarks left to reach are in n m k− + . For 
n m n m k− ⊆ − + , | |L

L n m

a
∈ −
∪  is less than or equal to  

| |L
L n m k

a
∈ − +
∪ . Thus the action number of π  is greater 

than Eh . That is *( ) ( )Eh s h s≤  which contradicts with 
the assumption. The assumption fails. The above 
proposition proves correct. 

V.  EXPERIMENTAL EVALUATION 

To evaluate the proposed algorithm, we implemented 
our admissible heuristic procedure on the infrastructure of 
the Fast Downward planner [10], and used the landmark 
discovery techniques of LAMA [3]. We conducted an 
empirical study on a wide sample of planning domains 
from the international planning competitions. All 
experiments were run on 2.2GHz Intel T7500 CPU; the 
running time and memory limits were 30 minutes and 
3GB respectively. The reported times do not include the 
PDDL to SAS+ translation as it is common to all planners. 
Table I depicts the results obtained over 

TABLE I.   
RUNTIMES OF THE PLANNERS ACROSS THE TEST DOMAINS 

task C* 
Eh  

LMh  
time(s) nodes time(s) nodes 

BLOCKWORLD domain 

4-0 6 0 7 0 10 

4-2 6 0 7 0.01 9 

6-0 12 0.01 13 0.01 18 

6-1 10 0 11 0 28 

8-2 16 0 17 0.01 37 

DEPOTS domain 

1 10 0 18 0 11 

3 27 0.42 1227 177.96 71334 

7 21 0.01 72 0.13 456 

10 24 0.44 1055   

13 25 0.07 158   

SATELLITE domain 

1 9 0 15 0 14 

3 11 0 40 0.01 46 

4 17 11.04 50673 23.19 49190 

LOGISTICS domain 

4-0 20 0 21 0 23 

4-1 19 0 20 0 23 

4-2 15 0 16 0 18 

5-0 27 0 28 0.01 30 

5-1 17 0 18 0 22 

5-2 8 0 9 0 9 

6-0 25 0 26 0.01 29 

6-1 14 0 15 0 15 

6-2 25 0 26 0.01 28 

6-9 24 0.01 25 0 33 

7-0 36 0.01 37 0.01 49 

7-1 44 0.01 45 0.01 80 

8-0 31 0 32 0 38 

8-1 44 0.01 45 0.01 67 

9-0 36 0.01 37 0.01 52 

9-1 30 0.01 31 0.01 32 

10-0 45 0.86 3040 0.02 108 

10-1 42 0.01 43 0.01 57 

11-1 54 0.05 61 0.04 157 

12-0 42 0.03 44 0.02 63 

12-1 68 0.05 71 0.04 154 
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Figure 2.  Estimates of 
Eh and 

LMh  on the initial states of all tasks 
from BLOCKWORLD domain. 
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Figure 3.  Estimates of 
Eh and 

LMh  on the initial states of all tasks 
from LOGISTICS domain. 

BLOCKWORLD, DEPOTS, SATELLITE and 
LOGISTICS domains. 

Table I lists only tasks that have been well solved by 
one of the planners. Empty entries in the table denote 
tasks that were not solved by the respective technique 
with optimal solution. Column task denotes problem 
instance, column C* denotes optimal solution length. 
Column time denotes run time, and the other column 
denotes the number of expanded nodes of different 
heuristics and search procedures. 

First, note that Eh  outperforms the heuristic LMh  in 
some samples of planning domains. In LOGISTICS 
domain, Eh  estimates the plan with the least nodes, 
although landmarks count heuristic estimates the plan 
with little nodes. That is because Eh  guides the search 
along the optimal plan with greedy best-first search. This 
property is seldom seen before. In BLOCKWORLD 
domain, some experimental results are similar. 
Heuristic Eh  works well for the structures of these 
problems. These problems have no goal which exists in 
their initial state. The effect of one action is the 
precondition of next action along the plan. The 
dependencies between actions are strong.  However, there 
are differences between BLOCKWORLD domain and 
LOGISTICS domain. The actions of BLOCKWORLD 
domain mostly add several landmarks, while the actions 
of LOGISTICS mostly add one landmark. Although the 
actions of BLOCKWORLD add several landmarks at the 
same time, only one landmark of the set _n m  is added. 
So the conditions of actions in both two domains are 
similar. The problems of BLOCKWORLD domain which 

Eh  does not work well have goals in their initial states. 
The final goals are all obtained by destroying the goals in 
the initial states.  We can make Eh adapt to this condition 
by considering landmarks needed again. That is the future 
research work. 

The number of problems for SATELLITE and DEPOT 
domains which Eh  works not well is greater than that of 
BLOCKWORLD and LOGISTICS domain. The reason is 
that Eh underestimates the number of actions left to 
execute for the complex relationships among these 
actions. The dependencies between actions are not one to 
one. The paths to the goals are so many that Eh  can not 
discriminate. Or the Eh  estimators of these paths are the 
same. The algorithm should visit all the nodes with the 
same estimators. Thus the time and the nodes expanded 
are much more than other domains. It is also the defect of 
landmark count heuristics. 

As shown in Fig. 2, we compare the heuristic values 
provided by Eh and LMh  to the initial states of all tasks 
in BLOCKWORLD domain. Each point in Fig. 2 
represents the initial state of a single task, with its x and y 
coordinates denoting the estimates provided to the initial 
state by Eh  and LMh , respectively. For many of these 
tasks, the cost of the optimal solution is currently not 

even known. It is not hard to see from the plots that the 
estimator of LMh  is greater than Eh . Sometimes the 
value of LMh  is greater than the length of optimal plan. 
So LMh  is not optimal estimator. On the other hand, the 
greater estimator is, more accurate the heuristic is. Thus, 
it will be much better to find one heuristic estimator 
which is admissible and much more close to optimal goal 
distances than Eh . This is another research work for the 
future. 

As shown in Fig. 3, we compare the heuristic values 
provided by Eh and LMh  to the initial states of all tasks 
in LOGISTICS domain. Each point in Fig. 3 represents 
the initial state of a single task, with its x and y 
coordinates denoting the estimates provided to the initial 
state by Eh  and LMh , respectively. It is clear that the 
estimators of both two heuristic are the same for those 
smaller tasks. As the goal distance grows, LMh  quickly 
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becomes larger than Eh . This is the same condition as 
Fig. 2. 

VI.  CONCLUSION 

In this paper, we show that landmarks count heuristic 
can be extended to be admissible without considering 
complex cost assignments. The more important is that the 
admissibility proof is provided. The empirical evaluation 
indicates that the extension of heuristic is admissible. In 
particular the heuristic works well in the domains which 
have strong dependences between actions and clear 
structures. Furthermore, the properties obtained from the 
evaluation are encouraging that we can make further 
exploration of this idea in the context of landmark 
heuristics for the future research work. 
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