环形子孔径拼接检测非球面中的数据 处理和标定

Data Processing and Calibration for Testing Aspheric Surfaces by Annular Subaperture Stitching Interferometry

干孝坤 张学军

(中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033)

Wang Xiaokun Zhang Xuejun

Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, Changchun, Jilin 130033, China

摘 要,利用环形子孔径拼接法,无需零位补偿就能够实现对大口径非球面的测量。但是用干涉仪直接测得的各子孔径 的相位数据中包含非共光路误差,同时必须把各子孔径的 CCD 像素坐标统一归化到镜面上,才能够实现全口 径的拼接。提出了一种用干涉仪 MetroPro 软件中的 Fiducial 功能模块标定坐标投影畸变的新方法 同时利用 Zemax 软件模拟非共光路误差,并利用编制的相位拟合软件对该误差进行 Zemike 多项式拟合,从而很好地实 现了坐标统一,并使非共路误差从相位分布中剔出。结合实例对一口径为 350 mm 的非球面进行了拼接实验, 并将拼接结果与零位补偿检测结果相对比 结果吻合 其 PV 值和 RMS 值的偏差分别为 0.0311 和 0.0051(1= $0.6328 \, \mu m$

关键词 光学技术;环形子孔径拼接;非共光路误差;投影畸变;最小二乘拟合

Abstract Subaperture stitching interferometry can test large aspherical surfaces without the aid of any auxiliary null optics. But the phase data of each subaperture include non -common path error, and in order to accomplish the stitching, the CCD pixel coordinate of each subaperture should be unified to the coordinate of the mirror. A new method for calibrating the projection distortion by the fiducial module was proposed, and the non-common path error was simulated and calculated by Zemax software and Zernike polynomial fitting. The stitching experiment was carried on with three subapertures for a hyperboloid. The synthesized surface map is consistent to the entire surface map from the null test, and the differences of PV and RMS error between them are 0.031 1 and 0.005 1(1=0.6328 µm), respectively.

Key words optical technique; annular subaperture stitching; non-common path error; projection distortion; leastsquares fitting

中图分类号 TQ171.65;O436.1 **doi**:10.3788/LOP20094601.0051

1 引言

随着空间技术的迅速发展,人们对空间遥感技术 提出了更高的要求。由于大口径非球面光学系统具有 组件少、视场大、波段宽、抑制杂光能力强和调制传递 函数高等特点,因此越来越多地被用于空间遥感器 中。但同时由于其光学系统的复杂性,也给光学元件 加工和检测带来相当大的难度。尤其是该光学系统的 核心部件——大口径非球面的检测技术一直是国内 外研究的难点和热点。

目前,检测光学非球面面形的方法很多,如轮廓

测量法、朗奇光栅法、莫尔条纹法和激光扫描法等[1~3]。但 是这些检测手段大多只能定性地检测出非球面的面 形,存在主观人为误差。即使能够定量地检测出非球 面面形,也仅仅适合干中、低精度非球面镜或某些二 次曲面的测量,或仅作为研磨工序的中间检验。干涉 检验具有分辨高、精度高、灵敏度高和信息采集时间 短等优点,因此该技术已成为检测光学面形的主要手 段。

利用环形子孔径拼接技术可以大大提高干涉仪 的测量范围 增加干涉仪测量非球面的口径和相对孔 径[45]。因此,将干涉检测技术与环形子孔径拼接技术 相结合将会提供一种高效、快捷的检测光学元件的方 法,且该方法无需零位补偿就能够实现对大口径非球 面的检测,从而可以缩短工期、降低成本。但是子孔径 拼接过程中的数据处理和标定是实现拼接的重要环 节,其精度直接影响拼接结果,因此有必要对其数据 分析和处理进行研究。

2 基本原理

环形子孔径拼接干涉的实验装置示意图如图 1 所示。首先调整干涉仪,使干涉仪出射的参考球面波 前的曲率中心与被测非球面的顶点曲率中心重合。此 时得到的干涉图中心部分的条纹较稀,干涉仪很容易 分辨,记录下中心区域的相位信息。但干涉图边缘部 分的条纹比较密集,条纹密度大于2 pixel/l (1= 0.6328 µm) 超过了干涉仪 CCD 的分辨率 将形成条 纹混叠现象。沿光轴方向移动干涉仪或非球面,改变 它们之间的距离,使待测非球面相对干参考波前的斜 率差减小到干涉仪允许的测量范围内,产生不同曲率 半径的参考球面波前来匹配非球面不同的环带区域 (称之为环形子孔径),用干涉的方法分别测量各个环 形子孔径区域,并使得各子孔径间有一定的重叠。通 过 Fiducial 标定,将所有子孔径的 CCD 像素坐标都 统一到镜面坐标上 并消除相应的非共光路误差。利用 综合优化全局拼接的方式求得各个子孔径相对基准子 孔径的相对调整误差(平移、倾斜和离焦等误差) [67] 从 测量的相位数据中消除相对装校误差,然后再从有相 同参考的子孔径中采集多个离散的相位数据,并将其 进行最小二乘拟合,拟合出整个系统的调整误差,就 能够得到整个面形的相位分布信息。

一般情况下,用干涉仪检测非球面时,需要进行 零位补偿,干涉仪出射的平面波经过补偿器后转换为 非球面波并与被检非球面的理论形状重合,因此所有 光线都垂直入射到被检非球面上,并沿原路返回与参 考波面形成干涉条纹。零位补偿器引入了一个较大的 球差来补偿被检非球面反射镜的非球面偏离量。但是 利用子孔径拼接检测时,直接用最接近球面波前去检 测非球面元件 ,经非球面返回的光线仅仅是近似沿法 线方向,这样被检光和参考光的路径就会不一致,对 于干涉光路中的元件,由于参考光与检测光不共路将 会产生一定的误差,称之为非共光路误差。利用干涉 直接测得的各子孔径的相位信息中包含这种误差 必 须剔除。此外,直接获得的相位数据中的坐标为 CCD 像素坐标,为了统一基准,实现拼接,必须把每个子孔 径的像素坐标统一投影到镜面坐标系上。

3 投影畸变的标定

对于平面镜的测量,干涉仪 CCD 像素坐标与镜 面坐标之间的关系是线性的。但是对于非球面,由于 其表面各点的曲率不同,以及干涉仪系统误差的影 响,加上非共光路误差的存在,致使被检非球面镜面 坐标与干涉仪 CCD 像素坐标之间并非简单的线性关 系。这种坐标系之间的非线性的对应关系称作投影畸 变[8]。

当所检测的非球面的非球面度很小时,可以把被 检非球面近似地用最接近球面代替,这样干涉仪测量

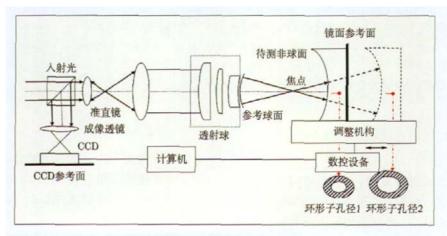
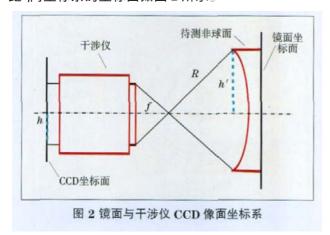



图 1 环形子孔径拼接检测非球面的设备示意图

坐标与镜面坐标之间有确定的函数关系

$$h' = R \cdot \sin[\arctan(h/f)],$$
 (1)

其中 h'为镜面坐标高度 R 为非球面最接近球面的半 径 h 为干涉仪测量坐标高度 f 为干涉仪标准镜的焦 距,两坐标系的坐标面如图2所示。

当拼接检测的非球面的非球面度很大时,如果仍 然采用(1)式,将会引入很大的误差,因此我们采用了 一种利用干涉仪 Fiducial 标定投影畸变的新方法。

Fiducial 是 Zygo GPI 干涉仪配套的处理软件 MetroPro 中的一项很重要也很实用的功能,运用它可 以精确地确定干涉数据中参考点的像素坐标 'Zygo 干 涉仪的功能模块如图 3 所示 图中的标号位置为选择 的相应的数据点。

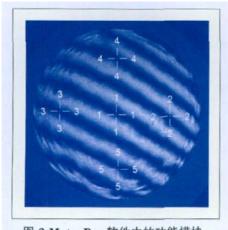


图 3 MetroPro 软件中的功能模块

首先用 Fiducial 功能在干涉图上选取若干数据 点做上标记, Fiducial 功能可以显示这些数据点的像 素坐标,记录下每一个数据点的像素坐标 $(x_{\text{p.}},y_{\text{ni}})$,同 时根据干涉图样以及已经做好的 Fiducial 标记 .在被 测非球面上相应位置做上记号。然后把被测非球面返 回到 CCOS 数控加工中心的轮廓测量系统中,根据被 测件上预先做好的记号,确定每个点在镜面坐标系中 的坐标(X_a, Y_a)。根据两个坐标系获得的坐标值,进行 数据拟合就可以求得干涉测量 CCD 像素坐标系与镜 面坐标系的对应关系。由此就能够将所有子孔径的坐 标统一到镜面坐标上。

因为投影畸变在非球面镜面坐标系中对光轴点 中心对称,且只与某点离开光轴点的距离有关。因此, 离开光轴点的距离相同,则投影畸变的大小相同。在 CCD 平面坐标系中,设光轴点的像素位置为 (x_{r0}, u_{r0}) , 则各数据点到光轴点的距离为

$$r_{\rm i} = \sqrt{(x_{\rm p_i} - x_{\rm p0})^2 + (y_{\rm p_i} - y_{\rm p0})^2}$$
 (2)

而在镜面坐标系中,设光轴点的位置为(X,a,Y,a),各点 到光轴点的距离为

$$R_{i} = \sqrt{(X_{q_{i}} - X_{q0})^{2} + (Y_{q_{i}} - Y_{q0})^{2}}.$$
 (3)

R 与 r 之间的非线性关系可为表示

$$R = a_0 + a_1 r + a_2 r^2 + a_3 r^3 + \cdots$$
 (4)

一般情况下, 取前四项就可以满足精度的要求。利用 最小二乘拟合,使其差值的平方和为最小:

$$S = \sum_{i}^{n} \left[R_{i} - (a_{0} + a_{1}r_{i} + a_{2}r_{i}^{2} + a_{3}r_{i}^{3}) \right]^{2}, \tag{5}$$

求解:
$$\frac{\partial S}{\partial a_0} = 0$$

$$\frac{\partial S}{\partial a_1} = 0$$

$$\frac{\partial S}{\partial a_2} = 0$$

$$\frac{\partial S}{\partial a_3} = 0$$
(6)

可得拟合参数为:

$$\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} n & \sum r_{i} & \sum r_{i}^{2} & \sum r_{i}^{3} & \sum r_{i}^{4} \\ \sum r_{i} & \sum r_{i}^{2} & \sum r_{i}^{3} & \sum r_{i}^{4} & \sum r_{i}^{5} \\ \sum r_{i}^{2} & \sum r_{i}^{3} & \sum r_{i}^{4} & \sum r_{i}^{5} & \sum r_{i}^{6} \end{bmatrix}^{-1} \begin{bmatrix} \sum R_{i} \\ \sum r_{i}R_{i} \\ \sum r_{i}^{2}R_{i} \end{bmatrix}. (7)$$

将 CCD 像素坐标和镜面坐标按极坐标归一化,因为 这两个坐标系中的角度值是相等的,所以根据求解的 系数 ,利用(5)式就可以将 CCD 坐标统一到镜面坐标 上去。

4 非共光路误差的消除

由图 4 可知, 当用标准球面镜作为参考表面去检 测球面镜时,待测光线与被检光线是完全共光路的。 但是利用标准球面波前去检测非球面表面时 经非球 面反射后的光线与参考光线的路径将不再吻合,会产

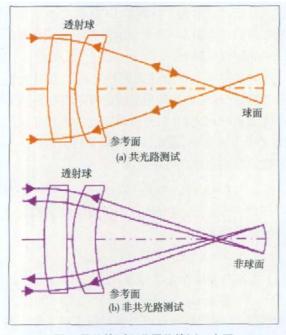


图 4 零位检测和非零位检测示意图

生一定的非共光路误差[9]。

当待测非球面的非球面度比较小时 非共光路误 差DW可以求解为

$$DW = f(x,y) - s(x,y,R), \tag{8}$$

其中f(x,y)为理想非球面方程s(x,y,R)为参考球面 的方程。此两式相减是沿轴向的非球面度,但理论上 非共光路误差应该是该非球面的最接近球面与任一 高度处非球面上点的法线的交点到非球面上对应点 的距离,它的求解比较复杂。当非球面度很小时,可以 用轴向非球面度来代替,但是当非球面度很大时,两 者之间的偏差很大,同时加上干涉仪系统误差的存 在,必须改用另一种方法来消除非共光路误差。

本文利用 Zemax 光学设计软件模拟了子孔径拼 接干涉检测系统。模拟检测中的非球面是理想的,干 涉光学系统按照实际光路进行模拟,因此所得到的相 位信息就是非共光路误差。将模拟产生的 Zernike 系 数导入用 Matlab 编制的相位 Zernike 多项式拟合程 序中,可以拟合求解得到对应每点的非共光路误差 值 即

$$DW_{i}(x_{i}, y_{i}) = \sum_{j=1}^{k} a_{j}u_{j}(x_{i}, y_{i}),$$
 (9)

式中 $u_i(x_i, y_i)$ 为 Zernike 多项式 a_i 为其系数 k 为泽 尼克的项数,一般取其前36项。利用非共光路误差的 Zernike 多项式表达形式,就可以将该误差从用干涉 仪直接测得的相位分布中剔除。

我们用Zemax 模拟了用标准球面波检测非球面 的系统和光路,检测光路图如图 5(a)所示,图中上端

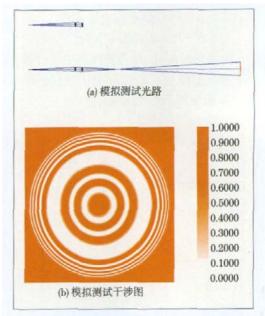


图 5 计算机模拟标准球面波检测非球面镜

的光路为参考球面波前,下端的光路为测试光路,对 于干涉光路中的元件,由于参考光和检测光不共路产 生的误差所形成的干涉图如图 5(b)所示,可以看出环 形子孔径拼接干涉检测中产生的非共路误差主要为 球差分布。

5 拼接检测实验

利用该拼接方法对一口径为 350 mm 的双曲面 $(R_0=4188.04 \text{ mm } k=-2.816915)$ 进行了拼接测量实 验,波长1=0.6328 µm,检测设备如图 6 所示。在精密 调整架上安装 Zygo 数字干涉仪,精确调节光轴方向 的平动。待测非球面元件安放在二维精密转台上,可 以精确地调整非球面的俯仰和扭摆。所有检测装置都 安放在防振气浮平台上。

首先调节好干涉仪,测得非球面上中心子孔径和 两个环形子孔径的相位分布,如图7所示。

利用上述方法,从各子孔径相位数据中剔出非共

图 6 环形子孔径拼接检测非球面设备装置图

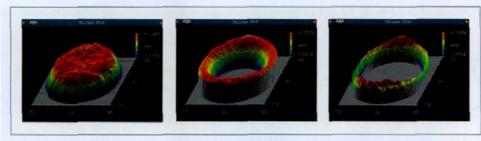
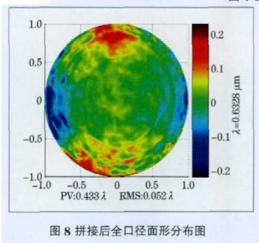



图 7 三个子孔径相位分布图

路误差 ,并利用Fuducial 标定投影畸变将各子孔径的 CCD 像素坐标统一到镜面坐标上,通过拼接算法,得 到拼接后的面形分布如图 8 所示 ,其 PV 值和 RMS 值 分别为 0.433 1 和 0.052 1。为了验证该方法的准确性 和可行性,对该非球面进行了零位补偿干涉测量,所 得的面形误差分布如图 9 所示 ,其 PV 值和 RMS 值分 别为 0.402 1 和 0.047 1。

比较可得,两种方法检测得到的面形误差分布是 一致的,其 PV 值和 RMS 值的偏差分别为 0.031 1 和 0.005 1 PV 值和 RMS 值的相对偏差分别为 7.16%和 9.62%。两种方法的检测结果相差很小 ,说明该拼接模 型和数据处理方法是准确可行的。

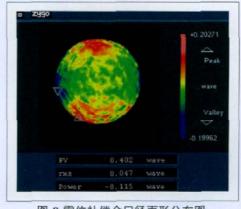


图 9 零位补偿全口径面形分布图

6 结论

本文对环形子孔径拼接中的数据处理和标定作 了详细的探讨,提出了消除坐标投影畸变和标定非共 路误差的新方法,能够精确地将 CCD 像素坐标和镜 面坐标统一起来,同时可以准确地消除非共路误差。 并结合实例对一口径为 350 mm 的双曲面进行了子 孔径拼接测量 ,从检测结果可以看出该技术是切实可 行的。因此提供了一种无需光学辅助元件就能够检测 大口径非球面的手段,该方法可以和其他检测技术进 行相互验证,从而可以确保测量的准确性和可靠性。

收稿日期:2008-11-07;收到修改稿日期:2008-12-04

基金项目:中国科学院长春光学精密机械与物理研究所三期创新 基金资助项目。

作者简介:王孝坤(1980-),男,江苏人,博士,助理研究员。主要从 事光学超精加工和检测技术研究。E-mail: jimwxk@sohu.com

┨参考文献┡

- 1 D.Malacara. Optical Shop Testing [M]. New York: J.Wiley & Sons, 1992
- 2 Albert Cordero-D. NullHartman, Ronchi-Hartmann tests[J]. Appl. Opt., 1990, 29(31):4618~4621
- 3 H.M.Xie. Phase shifing SEM moire method[J]. Opt. & Laser Technol., 2004, 36(4): 291~297
- 4 Y.M.Liu, G.N.Lawrence, C.L.Kiliopouos. Subaperture testing of aspheres with annular zones[J]. Appl. Opt., 1988,27(21): 4504-4513
- 5 M.Melozzi, L.Pezzati, A.Mazoni. Testing aspheric surfaces using mulitiple annular interferograms [J]. Opt. Eng., 1993, 32 $(5):1073\sim1079$
- 6 王孝坤,张学军,王丽辉 等.环形子孔径拼接干涉检测非球面的数学模型和仿真研究[J].光学精密工程 2006 14(4):527~532
- 7 X.K.Wang, L.H.Wang. Measurement of large aspheric surfaces by annular subaperture stitching interferometry [J]. Chin. Opt. Lett., 2007, 11(5):645~647
- 8 李锐刚, 郑立功, 张学军. 大口径高次、离轴非球面干涉测量中投影畸变的标定方法[J].光学精密, 2007, 15(2):192~198
- 9 A.E.Lowman, J.E.Greivenkamp. Modelling an interferometer for non-null testing of aspheres[J].1995, SPIE, 2536:139~147